使用ArcGis进行选址分析2——学校选址

本文详细介绍了如何利用ArcMap进行空间分析,包括计算地势、欧氏距离、重分类等因素,以确定新学校选址的最佳位置,综合考虑地势平坦、成本、距离娱乐场所和现有学校等因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

掌握栅格数据欧氏距离制图、成本距离制图、数据重分类等空间分析功能。为新学校选址,注意以下几点:

A.地势平坦

B.结合土地利用数据,选址成本较低的区域

C.距离娱乐场所越近越好

D.距离现有学校较远

启动ArcMap,加载所需要素类。

设置分析环境。单击【地理处理】→【环境】,在弹出的【环境设置】对话框中设置相关参数:

选择【工作空间】,设置合适的工作空间。选择【处理范围】,在【范围】下拉框中选择“与图层landuse相同”。选择【栅格分析】,在【像元大小】下拉框中选择“与图层landuse相同”(如图3-1)。

(图3-1)

1、提出坡度数据集

从elevation数据中提出坡度数据集。双击【Spatial Analyst工具】→【表面分析】→【坡度】,打开【坡度】对话框(如图3-2)。

(图3-2)

单击【确定】,生成坡度数据集(如图3-3)。

(图3-3)

2、欧氏距离分析

从rec_sites数据中提取娱乐场所欧氏距离数据。双击【Spatial Analyst工具】→【距离分析】→【欧氏距离】,打开【欧氏距离】对话框,在对话框中设置好各项选项(如图3-4)。

(图3-4)

单击【确定】,生成欧氏距离数据集(如图3-5)。

(图3-5)

同样的方法,从现有学校位置数据schools中提取学校欧氏距离数据集。生成欧氏距离数据集(如图3-6)。

(图3-6)

3、重分类

将学校的位置设置在平坦的地区比较有利,因此,采用等间距分级把坡度分为10级(如图3-7)。平坦的地方适宜性好,赋予较大的值;陡峭的地区赋予较小的值,从而得到重分类坡度数据集(如图3-8)。

(图3-7)

(图3-8)

单击确定,完成重分类,对分类结果的色带进行更改,以便更好观察。重分类的结果如下图(3-9)所示。

(图3-9)

考虑到新学校距离娱乐场所比较近时较好,采用等间距分为10类,距离娱乐场所最近的赋值为10,距离最远的赋值为1。得到重分类娱乐场所欧氏距离数据集(如图3-10)。

(图3-10)

考虑到新学校距离现有学校越远越好,将欧氏距离分为10级,距离学校最远的赋值为10,最近的赋值为1。得到重分类学校欧氏距离数据集(如图3-11)。

(图3-11)

在考察土地利用数据时,可以发现不同的土地类型对学校的选址也存在一定影响。如水体、湿地分布区均不适合建造学校,于是在重分类时删除这两项。

在【重分类】→【重分类】对话框中选择“Wetlands”、“Water”,单击【删除条目】,将这两项删除。然后根据用地类型给Barren land、Forest、Brush/transitional、Built up和Agriculture分别赋予值2、4、6、8、10(如图3-12),得到重分类土地利用图(如图3-13)。

(图3-12)

(图3-13)

4、合并数据集以找出最适宜的位置。

重分类后,各个数据集都统一到相同的等级体系内。现在根据四种因素的不同权重,合并数据集以找出最适宜的位置。

双击【地图代数】→【栅格计算器】,对重分类后的四个数据集进行合并运算,各数据层权重比为:距离娱乐设施占0.4,距现有学校距离占0.25,土地利用类型和地形因素各占0.175.(如图3-14)所示。

(图3-14)

单击完成,结果如图(3-15)所示。

(3-15)

得到结果后进行重分类,分为10类(如图3-16)。

(3-16)

单击确定,结果如图(3-17)所示。

(图3-17)

采用,条件函数工具,将大于等于9的区域提出来,确定其为最佳位置(如图3-18)。

(图3-18)

单击完成,提取出的结果(如图3-19)所示。

(图3-19)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值