题目描述
作物杂交是作物栽培中重要的一步。已知有 N 种作物 (编号 1 至 N ),第 i 种作物从播种到成熟的时间为 T_i
。作物之间两两可以进行杂交,杂交时间取两种中时间较长的一方。如作物 A 种植时间为 5 天,作物 B 种植时间为 7 天,
则 AB 杂交花费的时间为 7 天。作物杂交会产生固定的作物,新产生的作物仍然属于 N 种作物中的一种。初始时,拥有其中 MM 种作物的种子 (数量无限,可以支持多次杂交)。同时可以进行多个杂交过程。
求问对于给定的目标种子,最少需要多少天能够得到。如存在 4 种作物 ABCD,各自的成熟时间为 5 天、7 天、3 天、8 天。初始拥有 AB 两种作物的种子,
目标种子为 D,已知杂交情况为 A × B → C,A × C → D。则最短的杂交过程为:
第 1 天到第 7 天 (作物 B 的时间),A × B → C。
第 8 天到第 12 天 (作物 A 的时间),A × C → D。
花费 12 天得到作物 D 的种子。输入描述
输入的第 1 行包含 4 个整数 N, M, K, T,N 表示作物种类总数 (编号 1 至 N),
M 表示初始拥有的作物种子类型数量,K 表示可以杂交的方案数,T 表示目标种子的编号。第 2 行包含 N 个整数,其中第 i 个整数表示第 i 种作物的种植时间 T_i(1 <= T_i <= 100).
第 3 行包含 M 个整数,分别表示已拥有的种子类型 K_j(1 <= K_j <= M),Kj两两不同。
第 4 至 K + 3 行,每行包含 3 个整数 A, B,C,表示第 A 类作物和第 B 类作物杂交可以获得第 C 类作物的种子。
其中,1 <= N <= 2000, 2 <= M <= N, 1 <= K <= 10^5, 1 <= T <= N, 保证目标种子一定可以通过杂交得到。
输出描述
输出一个整数,表示得到目标种子的最短杂交时间。输入输出样例
示例
输入
6 2 4 6
5 3 4 6 4 9
1 2
1 2 3
1 3 4
2 3 5
4 5 6输出
16样例说明
第 1 天至第 5 天,将编号 1 与编号 2 的作物杂交,得到编号 3 的作物种子。
第 6 天至第 10 天,将编号 1 与编号 3 的作物杂交,得到编号 4 的作物种子。
第 6 天至第 9 天,将编号 2 与编号 3 的作物杂交,得到编号 5 的作物种子。
第 11 天至第 16 天,将编号 4 与编号 5 的作物杂交,得到编号 6 的作物种子。
总共花费 16 天。
本题的难点在于:可能有多个方案能产生目标作物,所以我们得去遍历每一个可能产生目标作物的方案,并计算多个产生目标作物的方案产生目标作物的时间,从中取最小者。为此,我们可以用两个数组h和pre, h[i]表示最后一个产生第i类作物的方案编号,pre[i]表示上一个产生同类作物的方案编号。即 i=h[t],j=pre[i]表示第i号方案和第j号方案均产生第t类作物,且j<i.
假设我们的目标作物是t,第i号方案和第j号方案均能合成目标作物t,那么我们需要计算
第i号方案的两种源作物(用于合成的)从什么时候开始拥有,以及这两种源作物的种植时间,这样才能算出第i号方案获得目标作物t的时间,
同理,算完第i号方案获得目标作物t的时间之后,通过pre[i]获得上一个能产生目标作物t的方案,同样要计算 其两种源作物(用于合成的)从什么时候开始拥有,以及这两种源作物的种植时间,这样才能算出其获得目标作物t的时间,
再通过pre[i]获得再上一个方案的编号,如此循环,遍历所有能获得目标作物t的方案,最后,从所有方案中,选出获得目标作物t的时间的较小者,即为答案。
本题需要用到的变量如下:
typedef pair<int, int> pii;
#define x first
#define y second
const int K = 1e5 + 1;
int n, m, k, t;
int w[2001]; //w[i]表示第i类作物的种植时间
bool is_have[2001]; //is_have[i]为true表示第i类作物已经拥有
int have[2001]; //have[i]=m表示第m天开始拥有第i类作物
int h[K]; //h[i]=k表示第k个杂交方案产生第i类作物,对于右多种方案产生第i类作物,h[i]存放的是最后一个方案的编号
int pre[K]; //pre[i]=j表示第j号和第i号方案产生同一类作物且j<i
pii d[K]; //d[i].x和d[i].y表示第i号杂交方案用来合成的两类作物
求获得目标作物t的最短时间的代码如下:
int dfs(int t) //获得第t类种子的最短时间
{
if (is_have[t])
return have[t];
//枚举所有可以产生第t类作物的杂交方案
for (int i = h[t]; i != -1; i = pre[i])
{
pii tem = d[i];
have[t] = min(have[t], max(w[tem.x], w[tem.y]) + max(dfs(tem.x), dfs(tem.y)));
}
is_have[t] = true;
return have[t];
}
对代码的说明如下:
max(w[tem.x], w[tem.y])表示x和y这两种源作物的种植时间的较长者(取较长的种植时间是题目的要求),
max(dfs(tem.x), dfs(tem.y)) 表示 获得x和y这两种源作物的时间的较晚者, 因为得两种源作物都得到了才能进行合成。
for 循环枚举所有获得目标作物的方案编号,min函数保证取所有获得目标作物t的时间的较短者。