题目描述
2020 年春节期间,有一个特殊的日期引起了大家的注意:2020 年 2 月 2 日。
因为如果将这个日期按 “yyyymmdd” 的格式写成一个 8 位数是 20200202,恰好是一个回文数。我们称这样的日期是回文日期。有人表示 20200202 是 “千年一遇” 的特殊日子。对此小明很不认同,
因为不到 2 年之后就是下一个回文日期:20211202 即 2021 年 12 月 2 日。也有人表示 20200202 并不仅仅是一个回文日期,还是一个 ABABBABA 型的回文日期。
对此小明也不认同,因为大约 100 年后就能遇到下一个 ABABBABA 型的回文日期:
21211212 即 2121 年 12 月 12 日。算不上 “千年一遇”,顶多算 “千年两遇”。给定一个 8 位数的日期,请你计算该日期之后下一个回文日期和下一个 ABABBABA 型的回文日期各是哪一天。
输入描述
输入包含一个八位整数 N,表示日期。对于所有评测用例,10000101 <= N <= 89991231,保证 N 是一个合法日期的 8 位数表示。
输出描述
输出两行,每行 1 个八位数。第一行表示下一个回文日期,第二行表示下一个 ABABBABA 型的回文日期。
这题要根据输入日期找下一个回文日期和下一个回文且ABABBABA型日期,我们可以从输入日期的下一天开始,一天一天地遍历,直到找到符合要求的日期为止。
将一个八位数表示的日期切割,用数组存储,f[i]表示八位数日期的第i位,则回文日期的判断条件如下:
f[1] == f[8] && f[2] == f[7] && f[3] == f[6] && f[4] == f[5]
回文且ABABBABA型日期的判断条件如下:
(f[1] == f[8] && f[2] == f[7] && f[3] == f[6] && f[4] == f[5])
&& (f[1] == f[3] && f[3] == f[6] && f[6] == f[8]) && (f[2] == f[4] && f[4] == f[5] && f[5] == f[7])
这样一来,压力就给到了求下一天这个函数上。
求下一天的函数如下:
bool is_leap(int n)
{
return ((n % 4 == 0 && n % 100 != 0) || n % 400 == 0) ? true : false;
}
long get_next_day(long n)
{
long y, m, d;
d = n % 100;
m = n % 10000 / 100;
y = n / 10000;
if (m == 1 || m == 3 || m == 5 || m == 7 || m == 8 || m == 10 || m == 12)
{
if (d < 31) d++;
else
{
d = 1, m++;
if (m == 13) m = 1, y++;
}
}
else if (m == 4 || m == 6 || m == 9 || m == 11)
{
if (d < 30) d++;
else d = 1, m++;
}
else //m==2
{
if (is_leap(y))
{
if (d < 29) d++;
else m++, d = 1;
}
else
{
if (d < 28) d++;
else m++, d = 1;
}
}
return y * 10000 + m * 100 + d;
}
这样,这道题就能完美解决啦。