运用优先队列分支限界法
问题描述
旅行商问题(Traveling Salesman Problem,TSP)又译为旅行推销员问题、货郎担问题,简称为TSP问题,是最基本的路线问题,该推销员从一个城市出发,需要求得经过所有城市后,回到出发地的最小路径成本。
该问题的实质是从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的哈密顿回路。
解决方法
分支限界法:利用贪心方法求得上界,,优先队列式分支限界法用优先队列存储活结点表
算法分析
-对于TSP(旅行商问题),我们需要利用上界和下界来对BFS(解空间树)进行剪枝,通过不断更新上界和下界,尽可能的排除不符合需求的child(子树),以实现剪枝。最终,当上限和下限等同时,我们可以获得最优解,以解决TSP问题
解题步骤
定义队列的优先级。 以zl为优先级,zl值越小,越优先
计算下界(即每个景点最小出边权值之和)
利用优先队列分支限界法,不断更新上界和路径和,如果大于上界就不加入队列,否则加入队列求出最优解。
部分代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#include<time.h>
using namespace std;
const int INF=1e7; //设置无穷大的值为107
const int N=100;
double g[N][N]; //旅行地图邻接矩阵战争
double minout[N]; //记录每个城市的最少出边
double minsum; //记录所有城市的最少出边之和
int bestx[N]; //记录当前最优路径
double bestl; //当前最优路径长度
int n,m; //城市个数n,边数m
struct Node//定义结点,记录当前结点的解信息
{
double cl; //当前已走过的路径长度
double rl; //剩余路径长度的下界
double zl; //当前路径长度的下界zl=rl+cl
int id; //城市序号
int x[N];//记录当前解向量
Node() {}
Node(double _cl,double _rl,double _zl,int _id)
{
cl = _cl;
rl = _rl;
zl = _zl;
id = _id;
}
};
//定义队列的优先级。 以zl为优先级,zl值越小,越优先
bool operator <(const Node &a, const Node &b)
{
return a.zl>b.zl;
}
bool Bound()//计算下界(即每个城市最小出边权值之和)
{
for(int i=1;i<=n;i++)
{
double minl=INF;//初时化城市点出边最小值
for(int j=1;j<=n;j++)//找每个城市的最小出边
if(g[i][j]!=INF&&g[i][j]<minl)
minl=g[i][j];
if(minl==INF)
return false;//表示无回路
minout[i]=minl;//记录每个城市的最少出边
cout<<"第"<<i<<"个城市的最少出边:"<<minout[i]<<" "<<endl;
minsum+=minl;//记录所有景点的最少出边之和
}
cout<<"每个城市的最少出边之和:""minsum= "<<minsum<<endl;
return true;
}
//Travelingbfsopt 为优化的优先队列式分支限界法
double Travelingbfsopt()
{
if(!Bound())
return -1;//表示无回路
Node livenode,newnode;//定义当前扩展结点livenode,生成新结点newnode
priority_queue<Node> q; //创建一个优先队列,优先级为当前路径长度的下界zl=rl+cl,zl值越小,越优先
newnode=Node(0,minsum,minsum,2);//创建根节点
for(int i=1;i<=n;i++)
{
newnode.x[i]=i;//初时化根结点的解向量
}
q.push(newnode);//根结点加入优先队列
while(!q.empty())
{
livenode=q.top();//取出队头元素作为当前扩展结点livenode
q.pop(); //队头元素出队
//cout<<"当前结点的id值:"<<livenode.id<<"当前结点的zl值:"<<livenode.zl<<endl;
//cout<<"当前结点的解向量:";
/*for(int i=1; i<=n; i++)
{
cout<<livenode.x[i];
}*/
//cout<<endl;
int t=livenode.id;//当前处理的城市序号
// 搜到倒数第2个结点时个城市的时候不需要往下搜索
if(t==n) //立即判断是否更新最优解,
//例如当前找到一个路径(1243),到达4号结点时,立即判断g[4][3]和g[3][1]是否有边相连,
//如果有边则判断当前路径长度cl+g[4][3]+g[3][1]<bestl,满足则更新最优值和最优解
{
//说明找到了一条更好的路径,记录相关信息
if(g[livenode.x[n-1]][livenode.x[n]]!=INF&&g[livenode.x[n]][1]!=INF)
if(livenode.cl+g[livenode.x[n-1]][livenode.x[n]]+g[livenode.x[n]][1]<bestl)
{
bestl=livenode.cl+g[livenode.x[n-1]][livenode.x[n]]+g[livenode.x[n]][1];
cout<<endl;
cout<<"当前最优的解向量:";
for(int i=1;i<=n;i++)
{
bestx[i]=livenode.x[i];
cout<<bestx[i];
}
cout<<endl;
cout<<endl;
}
continue;
}
//判断当前结点是否满足限界条件,如果不满足不再扩展
if(livenode.cl>=bestl)
continue;
//扩展
//没有到达叶子结点
for(int j=t; j<=n; j++)//搜索扩展结点的所有分支
{
if(g[livenode.x[t-1]][livenode.x[j]]!=INF)//如果x[t-1]城市与x[j]城市有边相连
{
double cl=livenode.cl+g[livenode.x[t-1]][livenode.x[j]];
double rl=livenode.rl-minout[livenode.x[j]];
double zl=cl+rl;
if(zl<bestl)//有可能得到更短的路线
{
newnode=Node(cl,rl,zl,t+1);
for(int i=1;i<=n;i++)
{
newnode.x[i]=livenode.x[i];//复制以前的解向量
}
swap(newnode.x[t], newnode.x[j]);//交换两个元素的值
q.push(newnode);//新结点入队
}
}
}
}
return bestl;//返回最优值。
}
void init()//初始化
{
bestl=INF;
minsum=0;
for(int i=0; i<=n; i++)
{
bestx[i]=0;
}
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
g[i][j]=g[j][i]=INF;//表示路径不可达
}
void print()//打印路径
{
cout<<endl;
cout<<"最短路径: ";
for(int i=1;i<=n; i++)
cout<<bestx[i]<<"--->";
cout<<"1"<<endl;
cout<<"最短路径长度:"<<bestl;
}
int main()
{ int start=clock();
int u, v, w;//u,v代表城市,w代表u和v城市之间路的长度
cout << "请输入景点数 n(结点数):";
cin >> n;
init();
cout << "请输入景点之间的连线数(边数):";
cin >> m;
cout << "请依次输入两个景点u和v之间的距离w,格式:景点u 景点v 距离w:"<<endl;
for(int i=1;i<=m;i++)
{
cin>>u>>v>>w;
g[u][v]=g[v][u]=w;
}
Travelingbfsopt();
print();
int end=clock();
printf("花费时间为:%dms\n",end-start);
return 0;
}
总结
这是我们的一次小组作业,大家相互配合,分工协作,共同完成此个课程设计,旅行商问题是分支限界法,求最优解,具有方向性,能尽快激活限界条件,八皇后问题回溯法,找到所有可行解数量,具有系统性
回溯法
深度优先搜索
搜索过程中动态产生问题的解空间
活结点的所有可行子结点被遍历后才被从栈中弹出
找出满足约束条件的所有解
分支限界法
广度优先或最小耗费优先搜索
队列、优先队列
每个结点只有一次成为活结点的机会
找出满足约束条件的一个解或特定意义下的最优解
————————————————
版权声明:本文为CSDN博主「m0_53233211」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_53233211/article/details/118178240