pythono基础:logging类简介

在Python中,logging模块是一个用于生成日志的标准库,它提供了灵活的日志记录机制,使得开发者能够方便地跟踪程序的运行过程、调试错误以及记录重要信息。logging模块的设计遵循“开箱即用,但高度可配置”的原则,这意味着它既可以直接使用,也支持根据需要进行复杂的定制。

logging模块的作用

  1. 记录信息:可以在程序运行时记录各种级别的日志信息,从调试细节到严重错误。
  2. 日志分级:支持多种日志级别,如DEBUG、INFO、WARNING、ERROR、CRITICAL,以便根据需要过滤日志。
  3. 日志输出:可以将日志发送到不同的目的地,如控制台、文件、电子邮件、网络服务等。
  4. 模块化设计:支持模块级的日志配置,使得大型应用中的各个部分可以独立控制其日志行为。
  5. 格式化日志:日志消息可以被格式化,包括时间戳、日志级别、模块名等信息。
  6. 性能考量:在日志级别高于配置级别时,避免了字符串格式化等操作,以减少性能开销。

主要库及方法

  • logging.basicConfig: 用于配置日志的基本设置,如日志级别、日志格式、输出目标等。
  • logging.getLogger(name=None): 获取或创建一个logger实例,name参数用于指定logger的名称,如果未指定,默认为root logger。
  • logger.setLevel(level): 设置logger的日志级别。
  • **logger.debug(message, *args, kwargs): 记录DEBUG级别的日志。
  • **logger.info(message, *args, kwargs): 记录INFO级别的日志。
  • **logger.warning(message, *args, kwargs): 记录WARNING级别的日志。
  • **logger.error(message, *args, kwargs): 记录ERROR级别的日志。
  • **logger.critical(message, *args, kwargs): 记录CRITICAL级别的日志。
  • **logger.exception(message, *args, kwargs): 类似于error(),但会自动记录异常信息。
  • logging.StreamHandler: 将日志输出到流(默认是sys.stderr)。
  • logging.FileHandler(filename[, mode[, encoding[, delay]]]): 将日志输出到文件。
  • logging.Formatter(fmt=None, datefmt=None, style='%'[, validate=True]): 定义日志消息的格式化方式。

示例应用

Python

1import logging
2
3# 配置日志
4logging.basicConfig(level=logging.DEBUG, 
5                    format='%(asctime)s - %(levelname)s - %(message)s',
6                    filename='app.log', 
7                    filemode='w')
8
9# 获取logger实例
10logger = logging.getLogger(__name__)
11
12try:
13    1/0
14except Exception as e:
15    logger.error("An error occurred: %s", str(e), exc_info=True)  # 记录错误并附带异常信息
16
17logger.info("This is an info message")  # 记录一般信息
18logger.debug("Debugging information")  # 记录调试信息

这个示例展示了如何配置日志模块来记录不同级别的日志,并且在发生错误时自动记录异常堆栈信息。通过合理使用logging模块,开发者可以有效地管理和监控程序的运行状态,便于问题排查和系统维护。

logging.Formatter是Python标准库logging模块中的一个类,用于格式化日志记录的输出。它定义了日志信息如何被转化成字符串,包括日志等级、时间戳、日志名称、消息文本等元素的布局和格式。使用Formatter可以让日志输出更加规范、易读,同时也便于日志的分析和处理。

主要属性和方法

  • 构造方法:

    Python
    1Formatter(fmt=None, datefmt=None, style='%')
    • fmt: 字符串,定义了日志记录的格式。可以使用占位符来表示日志的不同部分,如'%(asctime)s - %(levelname)s - %(message)s'
    • datefmt: 字符串,定义了时间戳的格式,如'%Y-%m-%d %H:%M:%S'
    • style: 字符,指定了格式字符串中占位符的前缀,默认是%,也可以是{(用于str.format样式)或 $(用于模板样式)。
  • format(record): 根据给定的日志记录recordFormatter的格式设置,返回一个格式化的字符串。

占位符

常用的占位符包括但不限于:

  • %(name)s: 日志器的名称。
  • %(levelno)s: 数字形式的日志等级。
  • %(levelname)s: 文本形式的日志等级(DEBUG, INFO, WARNING, ERROR, CRITICAL)。
  • %(pathname)s: 发出日志调用的模块的完整路径名。
  • %(filename)s: 发出日志调用的模块的文件名。
  • %(lineno)d: 发出日志调用的源代码行号。
  • %(funcName)s: 发出日志调用的函数名。
  • %(created)f: 日志创建时间,以时间戳形式表示。
  • %(asctime)s: 人类可读的时间戳,默认格式是'2003-07-08 16:49:45,896',可以通过datefmt参数自定义。
  • %(message)s: 用户提供的日志消息内容。

示例

Python

1import logging
2
3# 配置日志格式
4formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
5
6# 创建一个处理器,将日志输出到控制台,并应用格式化器
7handler = logging.StreamHandler()
8handler.setFormatter(formatter)
9
10# 获取名为'my_logger'的日志器
11logger = logging.getLogger('my_logger')
12logger.addHandler(handler)  # 添加处理器
13logger.setLevel(logging.INFO)  # 设置日志级别
14
15# 记录一条日志
16logger.info('This is an informational message.')

在这个例子中,我们创建了一个Formatter实例,设置了日志的输出格式,然后将其应用到一个StreamHandler处理器中。通过这种方式,我们可以自定义日志的输出样式,使得日志更加符合我们的需求和阅读习惯。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_65073612

谢谢大哥大姐

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值