「Stable Diffusion/SDXL框架下AI采样算法性能分析与优缺点评估」——以不同采样策略在生成质量、效率与资源消耗方面的对比为核心

  • 显存需求按大致估算:低<6G,中6G-10G,高10G-16G,极高16G+。

  • 推荐步数是标准参考,比如SD1.5、SDXL常规512x512到1024x1024解析度测试的。

  • 部分采样器,比如 lcmipndm 系列,专门为超快低步数推理设计,适合动态场景或实时应用。

  • cfg_pp(CFG Prompt-Preserving)版通常会更精准,但吃一点资源。

  • 如果是初期草稿 → lcm / ipndm

  • 如果是常规大批量出图 → euler_ancestral / dpmpp_2s_ancestral

  • 如果是精修高质量图 → dpmpp_2s_ancestral_cfg_pp / dpmpp_sde_gpu

  • 如果设备是4090 / A100,想出极限细节 → dpmpp_3m_sde_gpu 🔥

  • 低显存笔记本 → euler、ddim、lms

  • 梦幻国风、梦幻西游类项目 → 推荐 euler_ancestral + dpmpp_sde 混合用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值