-
显存需求按大致估算:低<6G,中6G-10G,高10G-16G,极高16G+。
-
推荐步数是标准参考,比如SD1.5、SDXL常规512x512到1024x1024解析度测试的。
-
部分采样器,比如 lcm、ipndm 系列,专门为超快低步数推理设计,适合动态场景或实时应用。
-
cfg_pp(CFG Prompt-Preserving)版通常会更精准,但吃一点资源。
-
如果是初期草稿 → lcm / ipndm
-
如果是常规大批量出图 → euler_ancestral / dpmpp_2s_ancestral
-
如果是精修高质量图 → dpmpp_2s_ancestral_cfg_pp / dpmpp_sde_gpu
-
如果设备是4090 / A100,想出极限细节 → dpmpp_3m_sde_gpu 🔥
-
低显存笔记本 → euler、ddim、lms
-
梦幻国风、梦幻西游类项目 → 推荐 euler_ancestral + dpmpp_sde 混合用
-
「Stable Diffusion/SDXL框架下AI采样算法性能分析与优缺点评估」——以不同采样策略在生成质量、效率与资源消耗方面的对比为核心
于 2025-04-27 17:24:44 首次发布