基于深度学习的蔬果识别

采用 ResNet50 与 ResNet152 深 度学习模型作为基础架构,通过层叠多个卷积层、池化层和全连接层来实现特征提取和分类任务。并利用 蔬果图像数据集进行模型训练,并采用数据增强技术 来扩充训练数据并减少过拟合问题。再通过 VGG19 模型处理结果作为参考。 经过实验证明,所提出的基于 ResNet50 深度学 习模型的蔬果识别处理小批量数据集上准确性和鲁棒性方面表现良好。

本项目中采用蔬果数据集大小为 2909,共 36 个 蔬果类别,分别是苹果、杏子、姜、葡萄柚、梨子、 辣椒、鳄梨、葡萄、草药、菠萝、火龙果、李子、香 蕉、豆子、刺角瓜、白菜、杨桃、奇异果、石榴、金 桔、韭菜、土豆、胡萝卜、南瓜、萝卜、花椰菜、柠 檬、芹菜、青柠、红甜菜、菌子、芒果、沙拉菜、樱 桃、圣女果、山竹、甜瓜、小柑橘、番茄、椰子、蘑 菇、萝卜、黄瓜、油桃、西葫芦、李子、洋葱、茄子、 茴香、橘子、百香果、大蒜、桃子。按照 8:2 的比 例划分数据集和测试集,通过测试集来验证模型的准 确度,如图 1 所示。

2  数据预处理 本实验中的数据预处理主要包括了图像的加载和 转换操作。代码通过 torchvision 库中的 transforms 模 块定义了一个 data_transform 的数据转换操作,其中包括了对图像的预处理步骤: 1)图像的缩放和裁剪:使 transforms.Resize(256) 将图像大小调整为 256x256,然后再使用 transforms. CenterCrop(224)对图像进行中心裁剪,将其裁剪为 224x224 的大小。 2)图像数据转换:使用 transforms.ToTensor()将 图像数据转换为张量形式,并使

### 构建基于深度学习的水果和蔬菜识别系统的概述 #### 数据集准备 为了构建有效的蔬果识别系统,数据集的质量至关重要。本项目中采用的数据集大小为2909张图像,涵盖了36种不同的蔬果类别[^2]。这些类别的具体种类包括但不限于苹果、杏子、姜等常见蔬果。 #### 模型架构选择 对于此类分类任务,可以考虑使用卷积神经网络(CNN),特别是那些已经在大规模图像上预训练过的模型作为基础框架。例如ResNet, VGG, 或者更先进的EfficientNet系列都可以提供良好的性能起点。如果希望利用目标检测技术,则YOLO家族中的版本如YOLOv5也是一个不错的选择,因为其具有较高的实时性和准确性[^1]。 #### 训练方法 在实际操作过程中,通常会采取迁移学习的方法来进行快速而高效地训练新模型: - **微调**:加载预先训练好的权重并仅调整最后一层以适应新的分类数目; - **冻结部分层**:保持某些早期特征提取层不变,只更新后面的全连接层参数; - **自定义损失函数**:根据业务需求定制化设计适合特定应用场景下的优化指标; 此外,在训练阶段还需要注意以下几点配置: - 使用Adam或SGD这样的经典优化器,并设置适当的学习率衰减策略; - 应用数据增强手段增加样本多样性,比如随机裁剪、翻转、颜色抖动等变换处理; - 设置早停机制防止过拟合现象发生; ```python import torch from torchvision import models, transforms from torch.utils.data import DataLoader from custom_dataset import CustomDataset # 假设有一个自定义的数据集类 # 加载预训练模型 model = models.resnet50(pretrained=True) # 替换最后的全连接层以匹配我们的类别数 num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, num_classes=36) # 定义转换规则用于数据增强 transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=.5, hue=.3), transforms.ToTensor() ]) # 创建DataLoader实例 train_loader = DataLoader(CustomDataset(transform), batch_size=32, shuffle=True) # 设定设备 (GPU/CPU) device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device) # 开始训练... for epoch in range(epochs): ... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值