概率论第五章 大数定律和中心极限定理

背住这四组 条件+结论! 不用管证明,只用记住条件+结论。


X1,X2,……,Xn是一个随机变量序列

切比雪夫不等式

对任意的\varepsilon>0,都有

口诀:先大于等于≥,后小于等于≤先期望,后方差。(30年只考过一次2001年,背住,以防要靠)

切比雪夫不等式可以使人们在随机变量X的分布未知的情况下,对事件|X-E(X)|\leqslant \varepsilon的概率作出估计

注意:应用切比雪夫不等式必须满足E(X)和D(X)存在且有限这一条件。


依概率收敛

区别于高数中的收敛


切比雪夫大数定律

切大条件:Xi不相关,方差有界,则有依概率收敛 \frac{1}{n}\sum_{i=1}^{n}Xi\overset{P}{\rightarrow}E(Xi)

设测量某一物理量X,在条件不变的情况下重复测量n次,得到的结果X1,X2,…,Xn是不完全相同的,这些测量结果可看作是n个独立随机变量X1,X2,…,Xn的试验数值,并且有同一数学期望E(X)。

上式表明,n足够大时,把n次测量结果的算术平均值作为E(X)的近似,所产生的误差是很小的。


辛钦大数定律

辛大条件:Xi独立同分布,期望存在,则有依概率收敛 \frac{1}{n}\sum_{i=1}^{n}Xi\overset{P}{\rightarrow}E(Xi)


伯努利大数定律:

不用背,是切大和辛大的特例(当Xn~B(n,p)时)


小结

小结:★背住切大和辛大,条件不一样,结论一样。

都是2个条件:一弱一强。

切大:不相关(弱)+方差有界(强)             不相关不一定独立。 方差存在,期望一定存在。

辛大:独立同分布(强)+期望存在(弱)      独立一定不相关。     期望存在,方差不一定存在、有界。


林德伯格中心极限定理 

林中条件:Xi独立同分布,方差存在,则有 \sum_{i=1}^{n}Xi\sim N(E,D),即\sum_{i=1}^{n}Xi服从正态分布。

N(E,D)中的E是指E( \sum_{i=1}^{n}Xi),D是指D( \sum_{i=1}^{n}Xi),都是由Xi的分布来确定。

例如:当Xi~B(1,p)时,期望=p,方差=p(1-p)。E( \sum_{i=1}^{n}Xi)=nE(Xi)=np,D( \sum_{i=1}^{n}Xi)=nD(Xi)=np(1-p)。


拉普拉斯中心极限定理

(不用记了,就看作是林中的特殊情况:X~B(n,p)时)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值