大数定律

本文深入探讨了大数定律的不同形式,包括伯努利、切比雪夫、马尔可夫、辛钦以及泊松、伯恩斯和格涅坚科大数定律,解释了这些定律如何为频率趋近于概率提供了坚实的理论基础。通过分析独立同分布随机变量序列的性质,文章揭示了大数定律在统计学与概率论中的核心作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


为频率趋近于概率提供理论基础。

1. 伯努利大数定律

在这里插入图片描述

等式的意义:样本平均值可以近似看作是总体平均值。(其他大数定律也适用)。

2. 切比雪夫大数定律

在这里插入图片描述

3. 马尔可夫大数定律⭐

  • 判断条件:在这里插入图片描述

则有在这里插入图片描述

条件常用于证明随机变量序列服从大数定律。

4. 辛钦大数定律

n}为一独立同分布的随机变量序列,若ξi的数学期望存在,
则有在这里插入图片描述

期望存在常用于证明随机变量序列服从大数定律。

5. 其他大数定律

a. 泊松大数定律

在这里插入图片描述

μn:n次独立试验中事件A出现的次数。
pi:事件A在第i次实验时出现的概率。

b. 伯恩斯大数定律

c. 格涅坚科大数定律

所有形式大数定律都是到达结论的一种方向。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值