一、概念、定理
二次型是一个多元函数 f (x1,x2,…,xn),每一项都是二次的,未知数的个数为任意个。
二次型可以写成矩阵形式(三个矩阵相乘):
f (x1,x2,…,xn)
中间的矩阵A是对称矩阵,A称为二次型f 的对应矩阵。
矩阵A的秩称为二次型的秩。r(f)=r(A)
已知二次型,怎么写出二次型的对应矩阵A?
步骤
1、二次型f 的平方项系数,按顺序写在A的主对角线上
2、二次型f 的混合项系数,除以2后写在相应位置上(例如混合项系数2x1x2的系数2除以2=1,写在a12和a21处)
给定一个二次型,可以写出对称矩阵A;给定一个对称矩阵A,可以写出一个二次型。
二次型f 和对称矩阵A是一一对应的,一个二次型f 对应唯一一个对称矩阵A。
二、标准形、正交变换法、配方法
1、标准形(/平方和):
若二次型只有平方项,没有混合项(混合项系数全为0)
标准形 ↔ 二次型矩阵A是对角矩阵(充要条件)
2、二次型的规范形:
二次型的平方项系数只有-1、1、0
二次型的标准形不是唯一的,规范形是唯一的。
3、正负惯性指数,是对于标准形来说的:
二次型的标准形中,正平方项的个数——正惯性指数p,负平方项的个数——负惯性指数q
4、合同
A、B是n阶矩阵,若存在可逆矩阵C使得C^TAC=B,则称A合同于B,
矩阵合同的性质(和相似差不多)
矩阵合同的性质(和相似差不多:反身性、对称性、传递性
★若矩阵A合同于B,则A、B对应二次型的正/负惯性指数相等。
题型:与已知矩阵A合同得矩阵是,四选一
原理:A合同于B ↔ A、B对应二次型的 正/负惯性指数相等
5、坐标变换,用矩阵描述就是x=Cy(必须满足|C|≠0,即C为可逆矩阵)
以x为自变量的二次型x^TAx (对应矩阵为A),经坐标变换x=Cy后,成为以y为自变量的二次型y^TBy (对应矩阵为B=C^TAC)
经坐标变换x=Cy后,新的二次型矩阵B和原来的矩阵A合同,C^TAC=B。
例子:
1)正交变换
对任一个二次型f (x1,x2,…,xn)=x^TAx,必可通过正交变换x=Qy,化成标准形。
★其中Q是正交矩阵,由矩阵A的n个正交的单位特征向量构成。
正交矩阵的性质:Q^T=Q^(-1)
原因Q^TQ=QQ^T=E且Q^(-1)Q=QQ^(-1)=E
以x为自变量的二次型x^TAx (对应矩阵为A),经正交变换x=Qy后,成为以y为自变量的二次型y^TBy (对应矩阵为B=Q^TAQ=Λ)
经正交变换x=Qy后,新的二次型矩阵B是对角矩阵,主对角线上元素为n个特征值(与Q中特征向量的顺序要对应)
正交变换法只能化二次型为标准形,平方项的系数即为特征值。
★★★常考题型:用正交变换化二次型为标准形,并写出所用坐标变换
步骤
1、写出二次型矩阵A
2、求特征值→由特征方程 |λE-A|=0解出
3、求特征向量→齐次方程组 (λE-A)x=0的非零解
4、改造特征向量为γ1,γ2,γ3
①如果特征值不同,则有n个特征向量已经正交,只需要单位化
②如果特征值有重根,要先判断特征向量是否已经正交?
若已正交只需单位化,否则施密特正交化(P239先正交再单位化)
5、构造正交矩阵Q=(γ1,γ2,γ3),
则经正交变换x=Qy,有
把二次型化为规范形(平方项系数只有-1,1,0),需要通过两次坐标变换。
2)配方法
对任一个二次型f (x1,x2,…,xn)=x^TAx,必可通过(配方法)可逆线性变换x=Cy,化成标准形。
★其中C是可逆矩阵,|C|≠0
(注意这里的平方项系数d1、d2…与特征值无关)(新的二次型矩阵B=C^TAC与原矩阵A合同)
配方法化二次型标准形
步骤
1、先配x1
2、再配x2
3、……
4、等全部配好了,再反过来写坐标变化。反解一下x等于多少y。
题型:给出带参数的二次型,给出正交变换后的标准形,求参数。
原理: 1、正交变换后的标准形,平方项系数为 二次型矩阵A的特征值。
2、|A|=特征值的乘积λ1λ2λ3。
步骤:写出二次型矩阵A,求|A|的值,即可求出参数a。
题型:给出带参数的二次型,给出二次型的秩,求参数。求二次型的正、负惯性指数。
原理:1、二次型的秩=二次型矩阵A的秩 r(f)=r(A)
2、正交变换后的标准形,平方项系数为 二次型矩阵A的特征值。
步骤:1、化矩阵A为行最简矩阵,求出参数
2、由特征方程 |λE-A|=0 解出特征值→得到正、负惯性指数
题型:给出正交变换后的标准形,给出正交矩阵Q的第一列,求Q。
原理:1、实对称矩阵A不同特征值的特征向量相互正交
步骤:1、设λ=3的特征向量为α2=(x1,x2)^T,内积(α1,α2)=0解得α2。
2、将α2单位化得γ2,Q=(γ1,γ2)。
惯性定理
二次型经过坐标变换(化成标准形)不改变其正负惯性指数。
正定二次型
若对任意非零列向量x=(x1,x2,x3……)^T,恒有二次型 f(x1,x2,x3……)=x^TAx>0。
称二次型为正定二次型,称矩阵为正定矩阵。
正定二次型的平方项系数必须严格>0。
定理:可逆线性变换x=Cy不改变二次型的正定性。
对一般的二次型,应设法作可逆变换x=Cy化成标准形(或规范形),看平方项系数di是否均大于零→判断其正定性
定理:二次型f正定的充要条件 ↔
1)A的正惯性指数p=n
2)A和单位矩阵E合同,即存在可逆矩阵C,使得C^TAC=E
3)A=D^TD,D是可逆矩阵
4)A的全部特征值λi都大于0
5)A的全部顺序主子式都大于0
定理:二次型f正定的必要条件
若二次型 x^TAx 正定→
(1) 矩阵A的主对角线上元素aii>0 原理:平方项系数均大于0
(2) A的行列式|A|>0 原理:全部特征值λi都大于0,|A|=λ1λ2λ3…
题型:判别二次型的正定性
方法一:用特征值。由特征方程 |λE-A|=0 解出A的特征值λi,全部特征值都大于0→正定
方法二:用顺序主子式。解出矩阵A所有顺序主子式Δi,全部顺序主子式都大于0→正定
方法三:用配方法。化成标准形,求出正、负惯性指数,p=n→正定
题型:已知二次型(带参数)正定,求参数取值。
步骤
1、写出二次型矩阵A
2、写出A的全部顺序主子式,由于正定→全部顺序主子式都大于0,列出多个不等式,取交集(交汇)作为t的取值
题型:给定矩阵A,作加减变形告知新矩阵(带参数)正定,求参数取值。
原理:矩阵正定→其全部特征值都大于0
关键:矩阵变形后的特征值怎么求
步骤
1、先求出A的特征值。用特征方程 |λE-A|=0
2、推出变形后新矩阵的特征值
3、列出多个不等式,取交集(交汇)作为参数的取值
例:
矩阵A的合同标准形不是唯一的。
合同标准形等同于规范形,就当成规范形来求!