线代第六章 二次型 复习笔记

本文介绍了二次型的概念、定理,包括如何由二次型写出对称矩阵A,标准形的转换方法(正交变换与配方法),正负惯性指数、合同性质,以及正定性的判定和参数求解。通过实例详细展示了正交变换化为标准形的过程和应用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概念、定理

二次型是一个多元函数 f (x1,x2,…,xn),每一项都是二次的,未知数的个数为任意个。

二次型可以写成矩阵形式(三个矩阵相乘):

f (x1,x2,…,xn)

 

中间的矩阵A是对称矩阵,A称为二次型f 的对应矩阵。

矩阵A的秩称为二次型的秩。r(f)=r(A)

已知二次型,怎么写出二次型的对应矩阵A?

步骤

1、二次型f 的平方项系数,按顺序写在A的主对角线上

2、二次型f 的混合项系数,除以2后写在相应位置上(例如混合项系数2x1x2的系数2除以2=1,写在a12和a21处)


给定一个二次型,可以写出对称矩阵A;给定一个对称矩阵A,可以写出一个二次型。

二次型f 和对称矩阵A是一一对应的,一个二次型f 对应唯一一个对称矩阵A。

二、标准形、正交变换法、配方法

1、标准形(/平方和):

若二次型只有平方项,没有混合项(混合项系数全为0)

标准形 ↔ 二次型矩阵A是对角矩阵(充要条件)

2、二次型的规范形

二次型的平方项系数只有-1、1、0

二次型的标准形不是唯一的,规范形是唯一的。

3、正负惯性指数,是对于标准形来说的:

二次型的标准形中,正平方项的个数——正惯性指数p,负平方项的个数——负惯性指数q

4、合同

A、B是n阶矩阵,若存在可逆矩阵C使得C^TAC=B,则称A合同于B,

矩阵合同的性质(和相似差不多)

  矩阵合同的性质(和相似差不多:反身性、对称性、传递性

若矩阵A合同于B,则A、B对应二次型的正/负惯性指数相等。

题型:与已知矩阵A合同得矩阵是,四选一

原理:A合同于B ↔ A、B对应二次型的 正/负惯性指数相等

5、坐标变换,用矩阵描述就是x=Cy(必须满足|C|≠0,即C为可逆矩阵)

以x为自变量的二次型x^TAx (对应矩阵为A),经坐标变换x=Cy后,成为以y为自变量的二次型y^TBy (对应矩阵为B=C^TAC)

经坐标变换x=Cy后,新的二次型矩阵B和原来的矩阵A合同,C^TAC=B。

例子: 


1)正交变换

对任一个二次型f (x1,x2,…,xn)=x^TAx,必可通过正交变换x=Qy,化成标准形。

★其中Q是正交矩阵,由矩阵A的n个正交的单位特征向量构成。

正交矩阵的性质:Q^T=Q^(-1)

原因Q^TQ=QQ^T=E且Q^(-1)Q=QQ^(-1)=E

以x为自变量的二次型x^TAx (对应矩阵为A),经正交变换x=Qy后,成为以y为自变量的二次型y^TBy (对应矩阵为B=Q^TAQ=Λ)

经正交变换x=Qy后,新的二次型矩阵B是对角矩阵主对角线上元素为n个特征值(与Q中特征向量的顺序要对应)

正交变换法只能化二次型为标准形,平方项的系数即为特征值。

★★★常考题型:用正交变换化二次型为标准形,并写出所用坐标变换

步骤

1、写出二次型矩阵A

2、求特征值→由特征方程 |λE-A|=0解出

3、求特征向量→齐次方程组 (λE-A)x=0的非零解

4、改造特征向量为γ1,γ2,γ3

     ①如果特征值不同,则有n个特征向量已经正交,只需要单位化

     ②如果特征值有重根,要先判断特征向量是否已经正交?

     若已正交只需单位化,否则施密特正交化(P239先正交再单位化)

5、构造正交矩阵Q=(γ1,γ2,γ3),

     则经正交变换x=Qy,有

把二次型化为规范形(平方项系数只有-1,1,0),需要通过两次坐标变换。


2)配方法

对任一个二次型f (x1,x2,…,xn)=x^TAx,必可通过(配方法)可逆线性变换x=Cy,化成标准形。

★其中C是可逆矩阵,|C|≠0

 (注意这里的平方项系数d1、d2…与特征值无关)(新的二次型矩阵B=C^TAC与原矩阵A合同)

配方法化二次型标准形

步骤

1、先配x1

2、再配x2

3、……

4、等全部配好了,再反过来写坐标变化。反解一下x等于多少y。

 


题型:给出带参数的二次型,给出正交变换后的标准形,求参数。

原理: 1、正交变换后的标准形,平方项系数为 二次型矩阵A的特征值。

2、|A|=特征值的乘积λ1λ2λ3。

步骤:写出二次型矩阵A,求|A|的值,即可求出参数a。

题型:给出带参数的二次型,给出二次型的秩,求参数。求二次型的正、负惯性指数。

原理:1、二次型的秩=二次型矩阵A的秩 r(f)=r(A)

2、正交变换后的标准形,平方项系数为 二次型矩阵A的特征值。

步骤:1、化矩阵A为行最简矩阵,求出参数

2、由特征方程 |λE-A|=0 解出特征值→得到正、负惯性指数

题型:给出正交变换后的标准形,给出正交矩阵Q的第一列,求Q。

原理:1、实对称矩阵A不同特征值的特征向量相互正交

步骤:1、设λ=3的特征向量为α2=(x1,x2)^T,内积(α1,α2)=0解得α2。

2、将α2单位化得γ2,Q=(γ1,γ2)。

惯性定理

二次型经过坐标变换(化成标准形)不改变其正负惯性指数。

正定二次型

若对任意非零列向量x=(x1,x2,x3……)^T,恒有二次型 f(x1,x2,x3……)=x^TAx>0。

称二次型为正定二次型,称矩阵为正定矩阵

正定二次型的平方项系数必须严格>0。

定理:可逆线性变换x=Cy不改变二次型的正定性

对一般的二次型,应设法作可逆变换x=Cy化成标准形(或规范形),看平方项系数di是否均大于零→判断其正定性

定理:二次型f正定的充要条件 ↔

1)A的正惯性指数p=n 

2)A和单位矩阵E合同,即存在可逆矩阵C,使得C^TAC=E

3)A=D^TD,D是可逆矩阵

4)A的全部特征值λi都大于0

5)A的全部顺序主子式都大于0

定理:二次型f正定的必要条件

若二次型 x^TAx 正定→

(1) 矩阵A的主对角线上元素aii>0       原理:平方项系数均大于0

(2) A的行列式|A|>0       原理:全部特征值λi都大于0,|A|=λ1λ2λ3…

​​​​​​​

题型:判别二次型的正定性

方法一:用特征值。由特征方程 |λE-A|=0 解出A的特征值λi,全部特征值都大于0→正定

方法二:用顺序主子式。解出矩阵A所有顺序主子式Δi,全部顺序主子式都大于0→正定

方法三:用配方法。化成标准形,求出正、负惯性指数,p=n→正定

题型:已知二次型(带参数)正定,求参数取值。

步骤

1、写出二次型矩阵A

2、写出A的全部顺序主子式,由于正定→全部顺序主子式都大于0,列出多个不等式,取交集(交汇)作为t的取值​​​​​​​

题型:给定矩阵A,作加减变形告知新矩阵(带参数)正定,求参数取值。

原理:矩阵正定→其全部特征值都大于0

关键:矩阵变形后的特征值怎么求​​​​​​​

步骤

1、先求出A的特征值。用特征方程 |λE-A|=0 

2、推出变形后新矩阵的特征值

3、列出多个不等式,取交集(交汇)作为参数的取值

例:

 矩阵A的合同标准形不是唯一的。

 合同标准形等同于规范形,就当成规范形来求!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值