机器学习:低功率,简单模型
深度学习:高功率,复杂模型
在拥有强大的处理能力之前,训练高功率模型将需要很长的时间;在拥有大量的数据之前,训练高功率模型会导致过度拟合问题。二者一些区别主要体现如下:
数据依赖:深度学习需要大量数据,否则容易过度拟合
硬件依赖:存在大量矩阵运算,对GPU依赖高
执行时间:深度学习参数很多,需要更多时间
领域知识依赖:机器学习障碍主要是特征工程步骤,需要领域专家和很多领域知识人工手动识别和标记特征;深度学习尝试从数据中直接获取更高等级的特征,减少对每个问题设计和构造特征的工作
问题解决模式:传统会拆分为子问题,再合并;深度学习更加强调端到端问题解决
可解释性:传统机器学习一般会给出很清楚的解释说明(决策树,线性/逻辑回归),但深度学习不会清楚告诉你神经网路协同具体是如何工作的,结果是如何一步步产生的
神经网络的学习任务
一般业界会把深度学习和神经网络作为同一个概念进行表达
神经网络学习任务分类和机器学习类似:
监督学习:分类问题和回归问题
非监督学习
强化学习
【图形讲解】

监督学习回归预测: