机器学习VS深度学习

机器学习:低功率,简单模型

深度学习:高功率,复杂模型

在拥有强大的处理能力之前,训练高功率模型将需要很长的时间;在拥有大量的数据之前,训练高功率模型会导致过度拟合问题。二者一些区别主要体现如下:

 

数据依赖:深度学习需要大量数据,否则容易过度拟合

硬件依赖:存在大量矩阵运算,对GPU依赖高

执行时间:深度学习参数很多,需要更多时间

领域知识依赖:机器学习障碍主要是特征工程步骤,需要领域专家和很多领域知识人工手动识别和标记特征;深度学习尝试从数据中直接获取更高等级的特征,减少对每个问题设计和构造特征的工作

问题解决模式:传统会拆分为子问题,再合并;深度学习更加强调端到端问题解决

可解释性:传统机器学习一般会给出很清楚的解释说明(决策树,线性/逻辑回归),但深度学习不会清楚告诉你神经网路协同具体是如何工作的,结果是如何一步步产生的

神经网络的学习任务

一般业界会把深度学习和神经网络作为同一个概念进行表达

神经网络学习任务分类和机器学习类似:

 

监督学习:分类问题和回归问题

非监督学习

强化学习

【图形讲解】be88a778518143e78de5308e979bec0f.png

 

监督学习回归预测:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值