提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
题目:
中国古代数学家张丘建在他的《算经》中提出了著名的“百钱百鸡问题”:鸡翁一,值钱五;鸡母一,值钱三;妈雏三,值钱 百钱买百鸡,翁、母、维各几何?
算法设计1:
通过对问题的理解,读者可能会想到列出两个三元一次方程,去解这个不定解方程,就能找出问题的解。这确实是一种办法,但现在要用“懒惰”的枚举策略进行算法设计。
设x,y,z分别为公鸡、母鸡、小鸡的数量。
尝试范围:由题意给定共100钱要买百鸡 若全买公鸡最多买100/5=20只,显然x的取值范围在1~20之间;同理,y的取值范围在1~33之间,z的取值范围在1~100之间。
约束条件:x+y+x=100且5x+3y+x/3=100。
代码:
算法一:
#include<stdio.h>
int main()
{
/********** Begin **********/
int x,y,z;
for(x=0;x<=20;x++)
for(y=0;y<=33;y++)
for(z=0;z<=100;z++)
if(100==x+y+z && 100==5*x+3*y+z/3.0)
printf("公鸡有%d只,母鸡有%d只,小鸡有%d只\n",x,y,z);
/********** End **********/
}
结果:
算法分析:以上算法需要枚举尝试20×34×100=68000次。算法效率显然太低。
算法设计2:
在公鸡(x)、母鸡(y)的数量确定后,小鸡的数量x就固定为100-x-y,无须再进行枚举了,此时约束条件只有一个:5x+3y+z/3=100。
算法二:
#include<stdio.h>
int main()
{
/********** Begin **********/
int x,y,z;
for(x=0;x<=20;x++)
for(y=0;y<=33;y++)
{
z=100-x-y;
if(100==x+y+z && 100==5*x+3*y+z/3.0)
printf("公鸡有%d只,母鸡有%d只,小鸡有%d只\n",x,y,z);
}
/********** End **********/
}
结果:
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了百钱百鸡问题(C++枚举法)。