算法模板(数论)

  1. 试除法判定质数

bool is_prime(int x) {
    if (x < 2) return false;
    for (int i = 2; i <= x / i ; i++) {
        if (x % i == 0) return false;
    }
    return true;
}
  1. 试除法分解质因数

void divide(int x) {
    for (int i = 2; i <= x / i; i++) {
        if (x % i == 0) {
            int s = 0;
            while (x % i == 0) x /= i, s++;
            cout << i << ' ' << s << endl;
        }
    }
    if (x > 1) cout << x << ' ' << 1 << endl;
}
  1. 朴素筛法求素数

int primes[N], cnt; // primes[] 存储所有素数
bool st[N]; // st[x] 存储x是否被筛掉

void get_primes(int n) {
    for (int i = 2; i <= n; i++) {
        if (st[i]) continue;
        primes[cnt++] = i;
        for (int j = i + 1; j <= n; j += i) st[j] = true;
    }
}
  1. 线性筛法求素数

int primes[N], cnt; // primes[] 存储所有素数
bool st[N]; // st[x] 存储x是否被筛掉

void get_primes(int n) {
    for (int i = 2; i <= n; i++) {
        if (!st[i]) primes[cnt++] = i;
        for (int j = 0; primes[j] <= n / i; j++) {
            st[primes[j]*i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}
  1. 试除法求所有约数

vector<int> get_divisors(int x) {
    vector<int> res;
    for (int i = 1; i <= x / i; i++) {
        if (x % i == 0) {
            res.push_back(i);
            if (i != x / i) res.push_back(x/i);
        }
    }
    sort(res.begin(),res.end());
    return res;
}
  1. 约数个数和约数之和

如果 N = p1^c1 * p2^c2 * ... * pk^ck
约数个数: (c1+1)*(c2+1)* ... * (ck+1)
约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)
// 约数个数
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int mod = 1e9 + 7;

int main() {
    int n;
    cin >> n;
    unordered_map<int,int> primes;
    while (n--) {
        int x;
        cin >> x;
        for (int i = 1; i <= x / i; i++) {
            while (x % i == 0) {
                x /= i;
                primes[i]++;
            }
        }
        if (x > 1) primes[x]++;
    }
    ll ret = 1;
    for (auto prime : primes) {
        ret = ret * (prime.second + 1) % mod;
    }
    cout << ret << '\n';
}
// 约数之和
#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
typedef long long ll;

int main() {
    int n;
    cin >> n;
    unordered_map<int,int> primes;
    while (n--) {
        int x;
        cin >> x;
        for (int i = 2; i <= x / i; i++) {
            while (x % i == 0) {
                x /= i;
                primes[i]++;
            }
        }
        if (x > 1) primes[x]++;
    }
        ll ret = 1;
        for (auto prime: primes) {
            int p = prime.first, a = prime.second;
            ll t = 1;
            while (a--) t = (t*p+1) % mod;
            ret = ret * t % mod;
        }
        printf("%d\n",ret);
    return 0;
}
  1. 欧几里得算法

int gcd(int a, int b) {
    return b ? gcd(b,a%b):a;
}
  1. 求欧拉函数

int phi(int x) {
    int res = x;
    for (int i = 2; i <= x / i; i++) {
        if (x % i == 0) {
            res = res / i * (i-1);
            while (x % i == 0) x /= i;
        }
    }
    if (x > 1) res = res / x * (x - 1);
    return res;
}
  1. 筛法求欧拉函数

int primes[N], cnt; // primes[] 存储所有素数
int euler[N]; // 存储每个数的欧拉函数
bool st[N];// st[x] 存储x是否被筛掉

void get_eulers(int n) {
    euler[1] = 1;
    for (int i = 2; i <= n; i++) {
        if (!st[i]) {
            primes[cnt++] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j++) {
            int t = primes[j]*i;
            st[t] = true;
            if (i % primes[j] == 0) {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}
  1. 快速幂

求m^k mod p, 时间复杂度o(logk)
int qmi(int m, int k, int p) {
    int res = 1 % p, t = m;
    while (k) {
        if (k & 1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}
  1. 扩展欧几里得算法

求x,y,使得ax+by = gcd(a,b)
int exgcd(int a, int b, int& x, int &y) {
    if (!b) {
        x = 1;
        y = 0;
        return a;
    }
    int d = exgcd(b,a%b,y,x);
    y -= (a/b)*x;
    return d;
}
  1. 高斯消元

// a[N][N] 是增广矩阵
int guass() {
    int c,r;
    for (c = 0, r = 0; c < n; c++) {
        int t = r;
        for (int i = r; i < n; i++) { // 找到绝对值最大的行
            if (fabs(a[i][c]) > fabs(a[t][c])) t = i;
        
        }
        if (fabs(a[t][c]) < eps) continue;
        for (int i = c; i <= n; i++) swap(a[t][i],a[r][i]);// 将绝对值最大的行换到最顶端
        for (int i = n; i >= c; i--) a[r][i] /= a[r][c]; // 将当前行的首位变成1
        for (int i = r + 1; i < n; i++) { // 用当前行将下面所有的列消成0
            if (fabs(a[i][c] > eps)) 
                for (int j = n; j >= c; j--) a[i][j] -= a[r][j] * a[i][c];
        }
        r++;
    }

    if (r < n) {
        for (int i = r; i < n; i++) {
            if (fabs(a[i][n]) > eps) return 2; // 无解
        }
        return 1;// 有无穷多组解
    }

    for (int i = n - 1; i >= 0; i--) {
        for (int j = i + 1; j < n; j++) a[i][n] -= a[i][j] * a[j][n];
    }
    return 0; // 有唯一解
}
  1. 递推法求组合数

// c[a][b] 表示从a个苹果中选b个方案数
for (int i = 0; i < N; i++) {
    for (int j = 0; j <= i; j++) {
        if (!j) c[i][j] = 1;
        else c[i][j] = (c[i-1][j] + c[i-1][j-1])%mod;
    }
}
  1. 通过预处理逆元的方式求组合数

//首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]
//如果取模的数是质数,可以用费马小定理求逆元
int qmi(int a, int k, int p)    // 快速幂模板
{
    int res = 1;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

// 预处理阶乘的余数和阶乘逆元的余数
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ )
{
    fact[i] = (LL)fact[i - 1] * i % mod;
    infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}
  1. Lucas定理

若p是质数,则对于任意整数 1 <= m <= n, 有:
C(n,m) = C(n%p,m%p)*c(n/p,m/p)(mod p)
int qmi(int a, int k, int p)  // 快速幂模板
{
    int res = 1 % p;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

int C(int a, int b, int p)  // 通过定理求组合数C(a, b)
{
    if (a < b) return 0;

    LL x = 1, y = 1;  // x是分子,y是分母
    for (int i = a, j = 1; j <= b; i --, j ++ )
    {
        x = (LL)x * i % p;
        y = (LL) y * j % p;
    }

    return x * (LL)qmi(y, p - 2, p) % p;
}

int lucas(LL a, LL b, int p)
{
    if (a < p && b < p) return C(a, b, p);
    return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}
  1. 分解质因数求组合数

当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:
1. 筛法求出范围内的所有质数
2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...
3. 用高精度乘法将所有质因子相乘
int primes[N], cnt;     // 存储所有质数
int sum[N];     // 存储每个质数的次数
bool st[N];     // 存储每个数是否已被筛掉


void get_primes(int n)      // 线性筛法求素数
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}


int get(int n, int p)       // 求n!中的次数
{
    int res = 0;
    while (n)
    {
        res += n / p;
        n /= p;
    }
    return res;
}


vector<int> mul(vector<int> a, int b)       // 高精度乘低精度模板
{
    vector<int> c;
    int t = 0;
    for (int i = 0; i < a.size(); i ++ )
    {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }

    while (t)
    {
        c.push_back(t % 10);
        t /= 10;
    }

    return c;
}

get_primes(a);  // 预处理范围内的所有质数

for (int i = 0; i < cnt; i ++ )     // 求每个质因数的次数
{
    int p = primes[i];
    sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}

vector<int> res;
res.push_back(1);

for (int i = 0; i < cnt; i ++ )     // 用高精度乘法将所有质因子相乘
    for (int j = 0; j < sum[i]; j ++ )
        res = mul(res, primes[i]);
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-Gaojs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值