P1031 [NOIP2002 提高组] 均分纸牌

问题描述:

 

思路:

首先给出所有的数,我们可以计算出每个堆最后的平均值,由于移动方向最多只有左右,所以每个堆只能改变旁边的值,为了方便我们从左到右遍历,不断得通过下一数来调整当前数,使当前数等于平均值,所以每个数最多只需要调整一次数便可,所以是最优解。

Code: 

#include<bits/stdc++.h>
using namespace std;

int m;
int a[110];


int main(){
	cin >> m;
	while(m -- ){
		
		int n;
	    cin >> n;
	    
	    int num = 0;
	    for(int i = 1;i <= n;i ++ ) cin >> a[i],num += a[i]; //计算总数 
	    
	    int t = num / n;                                            //平均值 
	    
	    int ans = 0;
	    for(int i = 1;i <= n;i ++ ){
	            if(a[i] < t){                //低于平均值 从下一个数补满 
	                a[i + 1] -= t - a[i];
	                ans ++ ;
	            }
				else if(a[i] > t){        //高于平均值,多出的给下一个值 
	                a[i + 1] += a[i] - t;
	                ans ++ ;
	            }    
	    }
	    
	    cout << ans; 
	    
	    puts("");
	}
	
    return 0;
}

代码运行截图:

 

 

 

### NOIP2002 提高 字串变换 题解算法 #### 问题描述 给定两个字符串 \( A \) 和 \( B \),以及一系列转换规则,每个规则定义了一个模式匹配和替换操作。目标是从初始字符串 \( A \) 出发,在应用这些规则的情况下能否通过有限次的转换变成最终字符串 \( B \)[^1]。 #### 解决思路 该题目可以通过广度优先搜索 (BFS) 来解决。具体来说: - **初始化队列**:将起始状态即原始字符串加入到待处理的状态列表中。 - **遍历过程中的每一个节点**:对于当前正在考察的状态(也就是某个中间阶段形成的字符串),尝试利用所有的转换规则对其进行可能的变化;如果某一次变化的结果正好等于目的字符串,则找到了解决方案并结束程序运行; - **记录路径**:为了防止重复访问相同的状态造成死循环,还需要维护一个集合用于存储已经遇到过的所有不同形式的字符串实例。 #### BFS实现细节 下面是一个简单的Python代码片段来展示如何使用BFS求解这个问题: ```python from collections import deque def bfs_transform(start, end, rules): queue = deque([(start, [])]) visited = set([start]) while queue: current_str, path = queue.popleft() if current_str == end: return True, path for rule_from, rule_to in rules: pos = current_str.find(rule_from) while pos != -1: new_str = current_str[:pos] + rule_to + current_str[pos+len(rule_from):] if new_str not in visited and len(new_str) <= len(end): visited.add(new_str) queue.append((new_str, path + [(current_str, new_str)])) pos = current_str.find(rule_from, pos + 1) return False, [] rules = [("A", "BC"), ("BC", "CB"), ("C", "ABA")] print(bfs_transform("A", "CBABAC", rules)) ``` 此段代码实现了基本的功能框架,实际竞赛环境中还需考虑更多边界情况及性能优化措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

那就随便一点

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值