牛!6个大模型的核心技术!

一、Transformer

Transformer 是大模型的底层模型。在深度学习的早期阶段,循环神经网络(RNN)是处理序列数据的常用方法。尽管RNN及其变体在某些任务上表现良好,但它们在处理长序列时容易遇到梯度消失和模型退化问题。为了解决这些问题,Transformer模型被提出。

而后2020年 OpenAI首次提出**“规模定律”**,指出模型的性能随着参数量、数据量、训练时长的指数级增加而呈现出线性提升,并且该提升对架构和优化超参数的依赖性非常弱[7]。从此研究人员逐步转移研究重心至大语言模型基座,并开展了大量相关研究。基于Transformer的GPT、Bert等大模型在各种自然语言处理任务上取得了突破性的成果,包括文本生成、机器翻译、问答等,并展现了在零样本和少样本情况下的泛化性。

模型原理:

Transformer模型精巧地结合了编码器和解码器两大部分,每一部分均由若干相同构造的“层”堆叠而成。这些层巧妙地将自注意力子层与线性前馈神经网络子层结合在一起。自注意力子层巧妙地运用点积注意力机制,为每个位置的输入序列编织独特的表示,而线性前馈神经网络子层则汲取自注意力层的智慧,产出富含信息的输出表示。值得一提的是,编码器和解码器各自装备了一个位置编码层,专门捕捉输入序列中的位置脉络。

模型训练:

Transformer模型的修炼之道依赖于反向传播算法和优化算法,如随机梯度下降。在修炼过程中,它细致地计算损失函数对权重的梯度,并运用优化算法微调这些权重,以追求损失函数的最小化。为了加速修炼进度和提高模型的通用能力,修炼者们还常常采纳正则化技术、集成学习等策略。

优点:

  1. 梯度消失与模型退化之困得以解决:Transformer模型凭借其独特的自注意力机制,能够游刃有余地捕捉序列中的长期依赖关系,从而摆脱了梯度消失和模型退化的桎梏。

  2. 并行计算能力卓越:Transformer模型的计算架构具备天然的并行性,使得在GPU上能够风驰电掣地进行训练和推断。

  3. 多任务表现出色:凭借强大的特征学习和表示能力,Transformer模型在机器翻译、文本分类、语音识别等多项任务中展现了卓越的性能。

缺点:

  1. 计算资源需求庞大:由于Transformer模型的计算可并行性,训练和推断过程需要庞大的计算资源支持。

  2. 对初始化权重敏感:Transformer模型对初始化权重的选择极为挑剔,不当的初始化可能导致训练过程不稳定或出现过拟合问题。

  3. 长期依赖关系处理受限:尽管Transformer模型已有效解决梯度消失和模型退化问题,但在处理超长序列时仍面临挑战。

应用场景:

Transformer模型在自然语言处理领域的应用可谓广泛,涵盖机器翻译、文本分类、文本生成等诸多方面。此外,Transformer模型还在图像识别、语音识别等领域大放异彩。

Python示例代码(简化版):

import torch``import torch.nn as nn``import torch.optim as optim``#该示例仅用于说明Transformer的基本结构和原理。实际的Transformer模型(如GPT或BERT)要复杂得多,并且需要更多的预处理步骤,如分词、填充、掩码等。``class Transformer(nn.Module):`    `def __init__(self, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward=2048):`        `super(Transformer, self).__init__()`        `self.model_type = 'Transformer'``   `        `# encoder layers`        `self.src_mask = None`        `self.pos_encoder = PositionalEncoding(d_model, max_len=5000)`        `encoder_layers = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward)`        `self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_encoder_layers)``   `        `# decoder layers`        `decoder_layers = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward)`        `self.transformer_decoder = nn.TransformerDecoder(decoder_layers, num_decoder_layers)``   `        `# decoder`        `self.decoder = nn.Linear(d_model, d_model)``   `        `self.init_weights()``   `    `def init_weights(self):`        `initrange = 0.1`        `self.decoder.weight.data.uniform_(-initrange, initrange)``   `    `def forward(self, src, tgt, teacher_forcing_ratio=0.5):`        `batch_size = tgt.size(0)`        `tgt_len = tgt.size(1)`        `tgt_vocab_size = self.decoder.out_features``   `        `# forward pass through encoder`        `src = self.pos_encoder(src)`        `output = self.transformer_encoder(src)``   `        `# prepare decoder input with teacher forcing`        `target_input = tgt[:, :-1].contiguous()`        `target_input = target_input.view(batch_size * tgt_len, -1)`        `target_input = torch.autograd.Variable(target_input)``   `        `# forward pass through decoder`        `output2 = self.transformer_decoder(target_input, output)`        `output2 = output2.view(batch_size, tgt_len, -1)``   `        `# generate predictions`        `prediction = self.decoder(output2)`        `prediction = prediction.view(batch_size * tgt_len, tgt_vocab_size)``   `        `return prediction[:, -1], prediction``   ``   ``class PositionalEncoding(nn.Module):`    `def __init__(self, d_model, max_len=5000):`        `super(PositionalEncoding, self).__init__()``   `        `# Compute the positional encodings once in log space.`        `pe = torch.zeros(max_len, d_model)`        `position = torch.arange(0, max_len).unsqueeze(1).float()`        `div_term = torch.exp(torch.arange(0, d_model, 2).float() *`                             `-(torch.log(torch.tensor(10000.0)) / d_model))`        `pe[:, 0::2] = torch.sin(position * div_term)`        `pe[:, 1::2] = torch.cos(position * div_term)`        `pe = pe.unsqueeze(0)`        `self.register_buffer('pe', pe)``   `    `def forward(self, x):`        `x = x + self.pe[:, :x.size(1)]`        `return x``   ``   ``# 超参数``d_model = 512``nhead = 8``num_encoder_layers = 6``num_decoder_layers = 6``dim_feedforward = 2048``   ``# 实例化模型``model = Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward)``   ``# 随机生成数据``src = torch.randn(10, 32, 512)``tgt = torch.randn(10, 32, 512)``   ``# 前向传播``prediction, predictions = model(src, tgt)``   ``print(prediction)

二、预训练技术

严格意义上讲,GPT 可能不算是一个模型,更像是一种预训练范式,它本身模型架构是基于Transformer,再通过海量的大数据下进行预训练 ,使模型能够学习到数据的通用特征。这种技术广泛应用于计算机视觉、自然语言处理等领域,并为后续的特定任务提供了强大的基础。

核心原理:

大模型预训练技术的核心原理在于通过大规模数据的预训练来提取丰富的语言知识和语义信息。在预训练阶段,模型利用自注意力机制捕捉文本中的上下文信息,并通过学习大量的文本数据,逐渐理解语言的规律和结构。这种学习方式是自监督的,模型能够自我优化和改进,从而提高其对文本的理解能力。

在微调阶段,模型会根据具体任务的需求进行有针对性的调整。通过有监督学习的方式,模型在特定数据集上进行训练,以优化其在该任务上的性能。这种微调过程使得模型能够更好地适应不同任务的需求,并提高其在实际应用中的效果。

训练过程:

大模型的预训练技术的训练过程主要分为以下几个步骤:

  1. 数据收集与预处理:首先,收集大量的无标签数据,这些数据可以来自互联网上的各种文本资源,如网页、新闻、博客、社交媒体等。随后,对这些数据进行预处理,包括分词、去除停用词、标准化等操作,以便于模型更好地理解和处理。

  2. 模型选择:根据具体任务和数据特点,选择合适的预训练模型。这些模型可以是基于Transformer的,如BERT、GPT等,也可以是基于RNN或CNN的模型。

  3. 预训练:使用无标签数据对模型进行预训练。在这一阶段,模型会学习语言的结构和语义信息,通过自监督学习或无监督学习的方式,从海量文本数据中提取出有用的特征表示。

  4. 微调:针对具体的下游任务,使用有标签的数据对预训练模型进行微调。通过调整模型的部分参数,使其能够更好地适应特定任务的文本数据,从而提高在任务上的性能。

预训练技术的作用:

  1. 提升性能:通过在大规模数据集上进行预训练,模型能够学习到更多的语言知识和语义信息,从而提高其在各种任务上的性能。这种性能提升不仅体现在准确率上,还体现在模型的泛化能力和鲁棒性上。

  2. 加速训练:预训练模型已经过大量的数据训练,因此可以提供相对准确的初始权重。这可以避免在训练新模型时出现梯度消失或爆炸的问题,从而加快模型的收敛速度。此外,采用预训练模型来训练新的模型还可以节省大量的时间和计算资源。

  3. 提高泛化能力:由于预训练模型已经过多种数据集的训练,因此具有更强的泛化能力。这意味着模型能够更好地适应不同的任务和领域,减少过拟合的风险。

三、RLHF

RLHF(Reinforcement Learning from Human Feedback,基于人类反馈的强化学习)RLHF是一种结合了强化学习和人类反馈的调优方法,旨在提高大模型在特定任务上的性能和可靠性。

RLHF的原理

RLHF的原理在于将强化学习与人类反馈相结合,通过人类的判断作为奖励信号来引导模型的行为。传统的强化学习依赖于环境提供的奖励信号来进行决策,而RLHF则利用人类对于模型输出的反馈作为奖励信号,使模型能够学习到更符合人类价值观的行为。

在RLHF中,人类反馈的作用至关重要。通过人类对模型输出的评价、标注或排序等方式,可以为模型提供关于其行为的直接反馈。这种反馈可以告诉模型哪些行为是受到人类认可的,哪些行为是需要改进的,从而帮助模型优化其决策过程。

RLHF的训练过程

RLHF的训练过程通常包括以下几个关键步骤:

  1. 预训练模型的选择与加载:首先,选择一个适合的预训练模型作为基础。这个预训练模型应该已经具备一定的通用能力,以便在后续的训练过程中进行微调。

  2. 监督微调(Supervised Fine-tuning,SFT):在这一阶段,模型通过模仿人类标注的对话示例来学习通用的、类似人类的对话。这有助于模型理解人类的对话模式和习惯,为后续的人类反馈学习打下基础。

  3. 奖励模型(Reward Model,RM)训练:为了利用人类反馈,需要训练一个奖励模型。这个模型会根据人类对于模型输出的标注或排序来学习如何评估模型的行为。具体来说,对于模型对同一个prompt的多个回复,利用人类标注来进行排序以获取人类偏好。然后,单独使用另一个语言模型作为奖励模型,在这个奖励模型上使用标注的数据进行训练。

  4. 近端策略优化(Proximal Policy Optimization,PPO):以训练得到的奖励模型作为奖励函数,继续对模型进行训练优化。通过不断迭代,模型会逐渐学会如何根据人类的反馈来改进其行为,使其输出更加符合人类的期望和标准。

RLHF的作用

RLHF在大模型技术中发挥着重要作用,具体体现在以下几个方面:

  1. 提高模型性能:通过结合强化学习和人类反馈,RLHF可以帮助模型更好地理解和适应特定任务的需求。通过人类的直接反馈,模型可以更加准确地把握任务的核心要点,从而提高其在任务上的性能表现。

  2. 增强模型可靠性:人类反馈的引入使得模型在决策过程中能够考虑到更多的因素,减少因环境噪声或数据偏差导致的错误决策。这有助于提高模型的稳定性和可靠性,使其在实际应用中更加可信。

  3. 促进模型道德和对齐:通过RLHF,我们可以确保模型的行为更加符合人类的道德和价值观。这对于一些涉及敏感信息或伦理问题的应用场景尤为重要,可以避免模型产生不当的输出或决策。

四、模型压缩

大模型的模型压缩技术通过去除冗余、降低精度和知识迁移等手段,实现了模型大小的减小和性能的优化。在实际应用中具有显著的作用:

  1. 降低存储和计算需求:通过减小模型大小,可以降低模型的存储需求,使其更容易部署在资源受限的设备上。同时,较小的模型也意味着更低的计算复杂度,可以提高推理速度。

  2. 提高部署效率:压缩后的模型更容易在各类设备上进行部署和集成,降低了部署难度和成本。这使得深度学习模型能够更广泛地应用于各种实际场景中。

  3. 保持模型性能:尽管模型被压缩,但通过精心设计的压缩算法和训练过程,可以确保压缩后的模型仍能保持较高的性能水平。这使得模型压缩成为一种有效的优化手段,能够在保持性能的同时降低模型的复杂度和资源需求。

模型压缩的主要目标是在保持模型性能的同时降低模型大小,以满足计算设备的限制和提高模型的部署速度。其核心技术包括权重裁剪、量化和知识蒸馏等。

  1. 权重裁剪:通过去除模型中不重要的权重来减小模型大小。这些不重要的权重对模型的性能贡献较小,通过裁剪可以降低模型的冗余度。

  2. 量化:将模型中的参数从浮点数转换为定点数或低精度浮点数,减小模型的体积。由于定点数和低精度浮点数占用的空间更小,因此可以有效降低模型的存储和计算需求。

  3. 知识蒸馏:通过训练一个小模型来模拟大模型的性能。大模型作为教师模型,提供软标签或输出分布给小模型(学生模型)学习,使学生模型能够在保持性能的同时,拥有更小的模型大小。

五、多模态融合

大模型的多模态融合技术通过结合不同模态的数据,增强了模型的感知和理解能力,提升了性能和应用范围。多模态融合技术在实际应用中发挥着重要作用:

提升模型性能:通过结合不同模态的信息,模型可以更全面地理解输入数据,从而提高性能。这在许多任务中都有体现,如图像分类、语音识别、情感分析等。

增强鲁棒性:不同模态的数据可能受到不同的噪声和干扰。通过多模态融合,模型可以从多个角度获取信息,从而增强对噪声和干扰的鲁棒性。

扩展应用范围:多模态融合技术使得模型能够处理更复杂的任务和数据类型。例如,在智能客服领域,模型可以同时处理文本和语音输入,提供更自然的交互体验。

多模态融合技术旨在结合来自不同模态(如文本、图像、音频等)的数据,以提供更全面、准确的信息。其原理在于,不同模态的数据往往包含互补的信息,通过将这些信息融合,可以增强模型的感知和理解能力。

在融合过程中,关键技术包括数据预处理、特征提取和融合算法。首先,需要对不同模态的数据进行预处理,包括清洗、标注和对齐等操作,以确保数据的质量和一致性。然后,利用特征提取技术,如卷积神经网络(CNN)用于图像特征提取,循环神经网络(RNN)用于文本特征提取等,从各个模态的数据中提取关键信息。最后,通过融合算法将这些特征进行融合,以生成更全面的表示。

六、Money is all you need!

说到底,“钞能力”才是大模型的核心!大模型需要很多资源,会耗费大量的算力、人力、电力。

首先,大模型的训练需要高性能计算机集群的支持,这些计算机集群需要配备大量的CPU、GPU或TPU等处理器,以进行大规模的并行计算。而这样的计算资源往往是非常昂贵的,需要大量的资金投入。同时,大模型的训练时间也非常长,可能需要数周甚至数月的时间,这也需要足够的算力支持。因此,没有足够的财力支持,很难承担这样大规模的算力需求。

其次,大模型的训练需要大量的数据科学家、工程师和研究人员,他们需要对算法、模型、数据等方面有深入的了解和熟练的技能。而这些专业人才往往也是高薪聘请的,需要大量的人力成本。同时,大模型的研发还需要团队之间的紧密合作和高效沟通,这也需要人力资源的支持。

最后,高性能计算机集群需要消耗大量的电力,而电力的成本也是不可忽视的。尤其是在大规模训练中,电力成本可能会占据相当一部分的训练成本。因此,没有足够的财力支持,也很难承担这样大规模的电力消耗。

总之,基于规模定律的Transformer等技术为我们开启的大模型时代,但同样重要的是,**Money决定了大模型能走多远!**没有足够的财力支持,很难承担大模型训练所需的算力、人力和电力等方面的资源需求。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

  • 15
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值