DeepSeek R1 是由国内团队开发的高性能开源大模型。详细介绍可以看这里:[甚至比 OpenAI-O1表现更好! 我测了 DeepSeek R1,结论只有两个字:牛逼!]
那本文将介绍其蒸馏版本在普通家用笔记本上的部署和使用,之所以选择蒸馏版本,是因为蒸馏版本通过模型蒸馏技术实现了算力需求的大幅降低。而且在数学、编程等领域表现出众,可处理复杂逻辑推理任务,如果你不了解蒸馏技术文末也会提供相关的拓展知识
运行环境准备
—
1 支持 AVX2 指令集的 CPU(近几年的笔记本通 常都支持)
2 内存建议 32GB 以上获得流畅体验
3 存储空间预留 10GB 以上
4 可选 NVIDIA 显卡实现 CUDA 加速
部署步骤详解
—
环境安装:
curl -sSf https://raw.githubusercontent.com/WasmEdge/WasmEdge/master/utils/install_v2.sh | bash -s -- -v 0.14.1
source /home/$USER/.bashrc
获取模型:
curl -LO https://huggingface.co/second-state/DeepSeek-R1-Distill-Llama-8B-GGUF/resolve/main/DeepSeek-R1-Distill-Llama-8B-Q5_K_M.gguf
下载服务端:
curl -LO https://github.com/LlamaEdge/LlamaEdge/releases/latest/download/llama-api-server.wasm
部署界面:
curl -LO https://github.com/LlamaEdge/chatbot-ui/releases/latest/download/chatbot-ui.tar.gz
tar xzf chatbot-ui.tar.gz
启动服务:
wasmedge --dir .:. --nn-preload default:GGML:AUTO:DeepSeek-R1-Distill-Llama-8B-Q5_K_M.gguf llama-api-server.wasm --prompt-template llama-3-chat --ctx-size 8096
然后访问 http://localhost:8080 开始对话
如果是想通过 API访问,因为提供了OPENAI 接口的兼容处理,请求接口直接就是"http://localhost:8080/v1",大模型调用时使用 DeepSeek-R1-Distill-Llama-8B
技术解析
—
模型蒸馏技术是通过大模型对小模型的"教导"实现知识迁移
在这个过程中,教师模型(大模型)会将其学到的特征、决策边界和推理能力等知识,通过特殊的训练方式传授给学生模型(小模型)
具体来说,大模型会生成带有软标签的训练数据,这些软标签包含了更丰富的分布信息,而不是简单的 0/1 分类
学生模型通过模仿教师模型的输出分布进行学习,从而在保持核心能力的同时大幅减少参数量,最终实现模型的轻量化
DeepSeek R1 正是通过这种技术,将原始的数百亿参数压缩到了 8B,同时保持了优秀的性能表现
Rust + WebAssembly 技术栈的选择体现了现代应用部署的革新思路。Rust 语言以其内存安全和高性能著称,编译后的代码性能接近 C++。而 WebAssembly 作为一种底层字节码格式,可以将高级语言编译成在浏览器中近乎原生速度运行的代码。
这两种技术的结合,整个运行时环境仅需 30MB,还实现了真正的跨平台部署能力。由于 WebAssembly 的沙箱特性,应用运行在隔离的环境中,提供了额外的安全保障。
同时,这种架构天然支持容器化部署,可以无缝集成到现代云原生基础设施中,在大模型部署场景下,这种技术组合相比传统的 Python 方案,显著减少了环境依赖,提升了部署效率,降低了维护成本。
本地有哪些应用场景?
—
本地部署的 DeepSeek R1 成为知识管理的得力工具。比如上下文理解,建立文档间的知识图谱,发现潜在关联,对话形式为用户提供精准的文档解读服务
在软件开发领域,类似于实时的代码补全建议,分析代码中的潜在问题。根据代码上下文自动生成单元测试,确保代码质量。对于复杂的重构需求,能提供详细的重构建议和实施步骤,大大提升开发效率
数据分析场景下,本地部署的 DeepSeek R1 可以智能识别数据特征,提供个性化的数据清洗策略。基于数据内容和分析目标,生成专业的分析报告,包括数据趋势、异常值检测和相关性分析。甚至能数据可视化,可深成适合的图表类型,直观地展示数据的变化!
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓