**********在深度学习中,**多头注意力(Multi-Head Attention)是一种注意力机制。它是对传统注意力机制的一种改进,旨在通过分割输入特征为多个“头部”(head)并独立处理每个头部来提高模型的表达能力和学习能力。
多头注意力机制已被广泛应用于各种深度学习任务中,包括但不限于机器翻译、文本摘要、语音识别、图像描述生成等。它在Transformer架构中扮演着至关重要的角色,而Transformer架构也已成为许多自然语言处理(NLP)任务的首选模型。
Multi-Head Attention
一、多头注意力机制
多头注意力机制(Multi-Head Attention)是什么?多头注意力机制将输入的特征(通常是查询、键和值)通过多个独立的、并行运行的注意力模块(或称为“头”)进行处理。****
每个头都会独立地计算注意力得分,并生成一个注意力加权后的输出。这些输出随后被合并(通常是通过拼接或平均)以形成一个最终的、更复杂的表示。
多头注意力计算过程是什么?********多头注意力将输入序列通过线性变换得到查询、键和值矩阵,然后分头进行缩放点积注意力运算,最后将所有头的输出拼接并经过线性变换得到最终输出。
-
输入变换:输入序列首先通过三个不同的线性变换层,分别得到查询(Query)、键(Key)和值(Value)矩阵。这些变换通常是通过全连接层实现的。
-
分头:将查询、键和值矩阵分成多个头(即多个子空间),每个头具有不同的线性变换参数。
-
注意力计算:对于每个头,都执行一次缩放点积注意力(Scaled Dot-Product Attention)运算。具体来说,计算查询和键的点积,经过缩放、加上偏置后,使用softmax函数得到注意力权重。这些权重用于加权值矩阵,生成加权和作为每个头的输出。
-
拼接与融合:将所有头的输出拼接在一起,形成一个长向量。然后,对拼接后的向量进行一个最终的线性变换,以整合来自不同头的信息,得到最终的多头注意力输出。
******多头注意力机制和注意力机制区别是什么?多头注意力机制通过引入多个并行的注意力头,提高了模型对输入数据的全面捕捉和处理能力,使其在处理**大规模数据和复杂任务时**更具优势。**
-
注意力机制:通过聚焦于关键信息,提高了模型对输入数据的理解和处理能力。
-
多头注意力机制:通过并行处理和集成多个注意力头的结果,从不同角度捕捉数据的多样性,进一步增强了模型的学习能力和表达力。
二、Transformer & GPT
****Transformer多头注意力有多少个Head?****Transformer多头注意力中的“头”(Head)的数量是一个超参数,这意味着它可以根据具体任务和数据集的需求进行调整。在Transformer模型中,并没有固定数量的注意力头,而是可以根据实际情况进行配置。
****GPT多头注意力有多少个Head?****GPT模型中的多头注意力机制的头数量同样是一个超参数,它根据GPT版本和模型配置的不同而有所变化。
-
GPT-1:GPT-1模型使用了12层的Transformer解码器结构,每层解码器中包含了多头自注意力机制。根据常见的配置,它可能采用了与Transformer模型相似的头数量设置,如8个、16个等。
-
GPT-2:GPT-2模型在结构上进行了扩展,例如GPT-2 Medium版本使用了24层的Transformer解码器,并且每层中的隐藏层维度为1024。在这个配置下,GPT-2 Medium有16个注意力头。
-
GPT-3:GPT-3模型在规模和复杂度上进一步增加,使用了更多的层和更大的隐藏层维度。然而,关于GPT-3具体使用了多少个注意力头的详细信息,并没有在公开文档中明确提及。与GPT-1和GPT-2类似,GPT-3的多头注意力头数量也是一个可以根据模型配置进行调整的超参数。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓