你是否正在投入大量资源开发基于MCP的Agent,却从未质疑过一个基本假设:MCP真的比传统函数调用更有优势吗? 2025年4月的这项开创性研究直接挑战了这一广泛接受的观点,其执行摘要明确指出:"使用MCPs并不显示出比函数调用有明显改进"。令人震惊的是,研究发现Qwen Web Search函数调用的准确率达到55.52%,实际上超过了包括Exa Search、DuckDuckGo、Tavily和Brave Search在内的多个MCP服务器!同时,不同MCP服务器之间的性能差异高达50%以上,从Bing Web Search的64%准确率到DuckDuckGo的仅13.62%。这项发布于GitHub的MCPBench评估框架,首次系统性地将MCP任务分为"数据获取"和"世界改变"两大类,并重点评估了前者。研究者在MySQL 9.2和PostgreSQL 15.8环境中进行了严谨测试,发现了提升MCP性能的关键:将复杂的参数构建(如SQL语句)从LLM移至服务端的声明式接口,在PostgreSQL实验中提升了惊人的22个百分点!无论你是正在选择MCP服务还是思考如何优化现有架构,这篇对既有假设的挑战不仅提供了全面的性能数据,还通过详实的案例研究(涵盖Frames、中文新闻、SQL_EVAL等多个数据集和多种服务实现)揭示了背后的设计原则。未来已来,一起来!
MCP协议的崛起与挑战
Model Context Protocol(MCP)作为一个开放协议,使AI模型能够通过标准化服务器实现安全地与本地和远程资源交互。在近几个月,已有数千个MCP被提出,同时OpenAI和阿里云等多个模型平台宣布在其LLM产品中支持MCP。你可能已经注意到MCP协议正在迅速普及,但作为开发Agent产品的工程师,你是否曾思考过不同MCP服务器的实际表现如何?它们在效率和效果上是否存在显著差异?更重要的是,MCP是否真的比传统的函数调用方式有明显优势?
研究背景:MCPBench评估框架
研究者设计了一个名为MCPBench的评估框架,用于测试各种MCP服务器在准确性、时间消耗和令牌使用量方面的表现。
项目地址:https://github.com/modelscope/MCPBench
这一评估聚焦于两个关键任务:
- Web搜索
(从互联网获取信息回答问题)
- 数据库搜索
(从数据库中查询数据)
研究者确保所有MCP服务器都在相同的环境中使用相同的LLM和提示,以确保评估的公平性和可靠性。
任务与数据集:全面评估MCP的能力
研究中的Web搜索任务要求LLM将问题重写为关键词或简短句子,然后使用工具搜索互联网并返回结果。为消除数据集偏差,研究者引入了多种数据源,包括中文和英文语言的各个领域,如下表所示的从Frames开源数据集(100条)、中文新闻(100条)和中文知识领域(100条)收集的数据。而数据库搜索任务则要求LLM通过数据库MCP服务器从数据库中检索数据,使用的数据源包括合成的汽车制造商数据源(355条)和基于Spider架构的SQL_EVAL数据集(256条)。
MCP服务器概述:多样化的搜索解决方案
研究者从GitHub和Smithary.AI收集了多种MCP服务器,并选择了那些在2025年4月有较多调用记录的服务器进行评估。
Web搜索相关的MCP服务器:
- Brave Search
- DuckDuckGo Search Server
- Tavily MCP Server
- Exa Search
- Fire Crawl Search
- Bing Web Search
- BochaAI
这些服务器都提供Web搜索功能但使用不同的搜索引擎和数据处理方法。
Web搜索相关的函数调用:
- Qwen Web Search
- Quark Search
数据库搜索相关的MCP服务器:
- XiYan MCP Server
- MySQL MCP Server
- PostgreSQL MCP Server
它们提供与数据库交互的不同方式和接口。
评估标准:全方位衡量性能
研究采用了多维度的评估标准:
- 准确性
:由DeepSeek-v3作为评分者评估答案的正确性
- 时间消耗
:记录LLM和MCP服务器的端到端延迟
- 令牌消耗
:记录预填充和完成令牌的使用
此外,实验在新加坡的双核CPU、2GB RAM服务器上执行,所有MCP服务器(除DuckDuckGo外)都以SSE模式在服务器上启动,超时设置为30秒,这确保了评估结果的一致性和可比性。
评估结果分析:MCP服务器的惊人差异
研究结果显示,不同MCP服务器在效果和效率方面存在显著差异,如下表所示:
-
效果差异:Bing Web Search达到最高的64%准确率,而DuckDuckGo仅有13.62%,相差超过50个百分点。
-
效率差异:更加明显 - Bing Web Search和Brave Search处理时间不到15秒,而Exa Search则需要231秒,这些数值均基于正常返回而非超时的有效样本。
-
令牌消耗:相对一致,输出令牌通常在150到250之间,表明模型始终提供简洁答案而不会不必要地解释其MCP使用情况。
MCP vs 函数调用:出人意料的对比结果
研究者将MCP服务器与函数调用的性能进行了比较,结果令人意外,如下图和下表所示:
-
函数调用(Qwen Web Search)和工具使用(Quark Search)展现出具有竞争力的准确性和时间消耗
-
Qwen Web Search的准确率达到55.52%,超过了Exa Search、DuckDuckGo、Tavily和Brave Search
-
函数调用(Qwen Web Search和Quark Search)与MCP服务相比,在时间消耗上并没有显著差异
这表明MCP并不一定在各方面都优于传统的函数调用方式。
性能优化策略:声明式接口的力量
研究者探索了如何提高MCP服务器性能,关注点放在数据库搜索任务上。他们发现:
-
MySQL MCP服务器等简单封装的数据库连接,将构建SQL查询语句这一最具挑战性的部分交给了LLM,导致整个工具调用的成功高度依赖于LLM构建SQL语句的能力
-
解决方案:研究者引入了声明式接口方法,用自然语言代替MCP中的结构化参数
-
实现:创建了名为XiYan MCP服务器的更新版本,使用自然语言而非SQL作为接口
-
效果:如下表所示,这种优化在MySQL实验中提高了2个百分点的准确性,在PostgreSQL实验中则提高了22个百分点
Web搜索案例分析:不同服务的结果对比
为深入了解不同Web搜索服务的性能差异,研究者使用Frames数据集评估了Brave Search、BochaAI和Qwen Web Search的搜索性能:
Brave Search
如下图所示,提供了前十个相关的wiki百科页面,包括标题、描述和URL,但缺乏详细描述使LLM难以有效地将问题与相关搜索结果联系起来。
BochaAI
如图4所示,总结了搜索结果并明确告知LLM正确答案是"Crimson Tide",这种直接方法使LLM能够准确无误地提供正确答案。
Qwen Web Search
尝试分析和总结搜索结果,但产生了不正确的结果,且没有向LLM展示原始搜索结果,大大阻碍了LLM推导正确答案的能力。
数据库搜索案例分析:声明式接口的优势
研究者使用SQL_EVAL数据集评估了PostgreSQL MCP Server和XiYan MCP Server在数据库搜索任务上的性能差异:
PostgreSQL MCP Server
如下图所示,通过接收LLM生成的SQL查询语句,执行查询并返回结果,实际上只处理数据库连接和执行SQL查询。
XiYan MCP Server
如下图所示,设计为直接接受原始问题作为输入,在服务器内部完成SQL生成和执行过程,输出为数据库查询结果,然后由LLM推导最终答案。这种声明式接口方法显著提高了性能,特别是在复杂查询场景中。
写在最后:优化MCP的启发
研究结果清晰地表明以下关键发现:
-
各种MCP服务器在效果和效率方面存在显著差异
- MCP并未始终表现出比非MCP方法(如函数调用)的明显改进
-
最重要的发现:通过优化LLM需要构建的参数,可以大幅提高MCP服务器的准确性
对你作为开发Agent产品的工程师而言,这一研究提供了宝贵的指导原则:
-
在选择MCP服务器时,应综合考虑其效果和效率
-
应关注降低LLM在参数构建方面的挑战
-
考虑使用自然语言作为接口替代复杂的结构化参数
-
重视搜索结果的处理和分析,因为这直接影响LLM推导正确答案的能力
通过这些优化,你可以显著提升Agent产品的性能和可靠性。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】