为什么需要位置信息?
背景介绍
Transformer 是一种基于注意力机制的神经网络模型,广泛应用于自然语言处理任务,如机器翻译、文本生成等。与传统的循环神经网络(RNN)不同,Transformer 没有内置的序列顺序处理能力,因此需要一种方法来引入序列中元素的位置信息。
-
自注意力机制的特点:Transformer 的核心是自注意力机制(Self-Attention),它能够在序列中任意两个位置之间建立直接的依赖关系。但是,由于这种机制对序列中元素的位置不敏感,如果不引入位置信息,模型就无法区分不同位置的元素,导致序列信息的丢失。
-
位置信息的重要性:在自然语言处理中,词语的顺序对句子的含义有着重要影响。例如,“我爱你”和“你爱我”虽然包含相同的词,但顺序不同,含义也不同。因此,引入位置信息对于模型理解序列数据至关重要。
为什么使用正弦和余弦函数表示位置信息
Transformer 模型的作者 Vaswani 等人在论文 “Attention Is All You Need” 中提出了一种 位置编码(Positional Encoding) 方法,使用正弦和余弦函数来表示位置信息,其原因和优势如下:
1. 捕捉不同频率的位置信息
-
多频率表示:通过对不同维度使用不同频率的正弦和余弦函数,位置编码能够在不同的尺度上捕捉位置信息。这使得模型可以学习到序列中不同范围的位置信息。
-
公式表示:
对于序列中位置为 p o s pos pos 的元素,第 i i i 个维度的位置编码为:
P E ( p o s , 2 i ) = sin ( p o s 1000 0 2 i / d m o d e l ) PE_{(pos, 2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right) PE(pos,2i)=sin(100002i/dmodelpos)
P E ( p o s , 2 i + 1 ) = cos ( p o s 1000 0 2 i / d m o d e l ) PE_{(pos, 2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right) PE(pos,2i+1)=cos(100002i/dmodelpos)
其中, d m o d e l d_{model} dmodel是模型的维度, i i i 是维度的索引。
2. 方便模型学习相对位置关系
- 线性可加性:正弦和余弦函数具有良好的数学性质,例如:
sin ( a + b ) = sin a cos b + cos a sin b \sin(a + b) = \sin a \cos b + \cos a \sin b sin(a+b)=sinacosb+cosasinb
cos ( a + b ) = cos a cos b − sin a sin b \cos(a + b) = \cos a \cos b - \sin a \sin b cos(a+