梯度与导数的关系与区别

梯度与导数的关系与区别

1. 关系

  • 定义:梯度是多变量函数偏导数的向量形式。

    • 对于 ( f(x, y) ),梯度为:
      ∇ f = ( ∂ f ∂ x , ∂ f ∂ y ) \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) f=(xf,yf)
  • 联系:偏导数是导数在多维的扩展,梯度将所有偏导数整合成一个向量。

2. 区别

  • 维度
    • 导数:单变量函数,结果为标量(如斜率)。
    • 梯度:多变量函数,结果为向量。
  • 信息
    • 导数:仅表示单一方向的变化率。
    • 梯度:同时表示变化率大小和最快增加方向。
  • 适用场景
    • 导数:一维问题,如 ( f(x) = x^2 )。
    • 梯度:多维优化,如 ( f(x, y) = x^2 + y^2 )。

3. 梯度方向

  • 意义:梯度 grad f(x) 指向函数值增加最快的方向。
    • 模 ( |grad f(x)| ) 表示变化率大小。
  • 反方向:( -grad f(x)) 是函数值减小最快的方向。

梯度下降法与梯度上升法

梯度下降法 (Gradient Descent)

  • 目标:找到函数 ( f(x) ) 的最小值。

  • 方法:沿着梯度 ( grad f(x) ) 的反方向 ( -grad f(x) ) 移动,因为 ( -grad f(x) ) 是函数值减小最快的方向。

  • 更新公式
    x n + 1 = x n − η ∇ f ( x n ) x_{n+1} = x_n - \eta \nabla f(x_n) xn+1=xnηf(xn)
    其中 ( \eta ) 是步长(学习率)。

梯度上升法 (Gradient Ascent)

  • 目标:找到函数 ( f(x) ) 的最大值。

  • 方法:直接沿着梯度 (grad f(x) ) 的方向移动,因为 ( grad f(x) ) 是函数值增加最快的方向。

  • 更新公式
    x n + 1 = x n + η ∇ f ( x n ) x_{n+1} = x_n + \eta \nabla f(x_n) xn+1=xn+ηf(xn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值