数模笔记15-马尔可夫算法

马尔可夫算法

随机过程

研究随机现象变化过程的概率规律性的学科。

定义1:
设 { ξ t , t ∈ T } 是一族随机变量, T 是一个实数集合,若对任意实数 t ∈ T , ξ t 是一个随机变量,则称 { ξ t , t ∈ T } 为随机过程。 设\{ξ _ t,t∈T\}是一族随机变量,T是一个实数集合,若对任意实数t∈T,ξ _ t是一个随机变量,则称\{ξ _ t,t∈T\}为随机过程。 {ξttT}是一族随机变量,T是一个实数集合,若对任意实数tTξt是一个随机变量,则称{ξttT}为随机过程。
T为参数集合,参数t可以看作时间。ξ _ t的每一个可能取值所构成的集合称为状态空间,记为E。当参数T为非负整数集时,随机过程又称为随机序列。马尔可夫 (Markov) 链就是一类特殊的随机序列。

在随机过程中有很多这样的现象:某一系统在已知现在的情况下,系统未来时刻的情况只与现在有关,而与过去的历史无直接关系。

已知现在,且来与过去无关。描述这类随机现象的数学模型称为马尔可夫模型

定义2:
设 { ξ n , n = 1 , 2 , . . . } 是一个随机序列,状态空间 E 为有限或可列集,对于任意的正整数 m , n ,若 i , j , i k ∈ E ( k = 1 , . . . , n − 1 ) , 有 P { ξ n + m = j ∣ ξ n = i , ξ n − 1 = i n − 1 , . . . , ξ 1 = i 1 } = P { ξ n + m = j ∣ ξ n = i } —— ( 1 ) 则称 { ξ n , n = 1 , 2 , . . . } 为一个马尔科夫链(马氏链)。 设\{ξ_n,n=1,2,...\}是一个随机序列,状态空间E为有限或可列集,对于任意的正整数m,n,若i,j,i_k∈E(k=1,...,n-1),有\\ P\{ξ_{n+m}=j|ξ_n=i,ξ_{n-1}=i_{n-1},...,ξ_1=i_1\}=P\{ξ_{n+m}=j|ξ_n=i\}——(1)\\ 则称\{ξ_n,n=1,2,...\}为一个马尔科夫链(马氏链)。 {ξn,n=1,2,...}是一个随机序列,状态空间E为有限或可列集,对于任意的正整数m,n,若i,j,ikE(k=1,...,n1),P{ξn+m=jξn=i,ξn1=in1,...,ξ1=i1}=P{ξn+m=jξn=i}——(1)则称{ξn,n=1,2,...}为一个马尔科夫链(马氏链)。
定义3:
设 { ξ n , n = 1 , 2 , . . . } 是一个马氏链,如果等式 ( 1 ) 右边的条件概率与 n 无关,即 P { ξ n + m = j ∣ ξ n = i } = P i j ( m ) —— ( 2 ) 则称 { ξ n , n = 1 , 2 , . . . } 为时齐的马氏链 设\{ξ_n,n=1,2,...\}是一个马氏链,如果等式(1)右边的条件概率与n无关,即\\ P\{ξ_{n+m}=j|ξ_n=i\}=P_{ij}(m)——(2)\\ 则称\{ξ_n,n=1,2,...\}为时齐的马氏链 {ξn,n=1,2,...}是一个马氏链,如果等式(1)右边的条件概率与n无关,即P{ξn+m=jξn=i}=Pij(m)——(2)则称{ξn,n=1,2,...}为时齐的马氏链
P_{ij}(m)称为系统由状态 i 经过m个时间间隔(或m步)转移到状态 j 的概率。(2)式称为时齐性。它的含义是:系统由状态i到状态j的转移概率只依赖与时间间隔的长短,与起始的时刻无关。


转移概率矩阵

对于一个马尔可夫链 { ξ n , n = 1 , 2 , . . . } ,称以 m 步转移概率 P i j ( m ) 为元素的矩阵 P ( m ) = ( P i j ( m ) ) 为马尔科夫链的 m 步转移矩阵。 当 m = 1 时,记 P ( 1 ) = P 为马氏链的一步转移矩阵,或简称转移矩阵。它们具有三个基本性质: ( 1 ) 对一切 i , j ∈ E , 0 ≤ P i j ( m ) ≤ 1 ; ( 2 ) 对一切 i ∈ E , ∑ j ∈ E P i j ( m ) = 1 ; ( 3 ) 对一切 i , j ∈ E , p i j ( 0 ) = δ i j = { 1 , i = j 0 , i ≠ j 对于一个马尔可夫链\{ξ_n,n=1,2,...\},称以m步转移概率P_{ij}(m)为元素的矩阵P(m)=(P_{ij}(m))为马尔科夫链的m步转移矩阵。\\ 当m=1时,记P(1)=P为马氏链的一步转移矩阵,或简称转移矩阵。它们具有三个基本性质:\\ (1)对一切i,j∈E,0≤P_{ij}(m)≤1;\\ (2)对一切i∈E,\sum_{j∈E}P_{ij}(m)=1;\\ (3)对一切i,j∈E,p_{ij}(0)=δ_{ij}= \begin{cases} 1,i=j\\ 0,i≠j \end{cases} 对于一个马尔可夫链{ξn,n=1,2,...},称以m步转移概率Pij(m)为元素的矩阵P(m)=(Pij(m))为马尔科夫链的m步转移矩阵。m=1时,记P(1)=P为马氏链的一步转移矩阵,或简称转移矩阵。它们具有三个基本性质:(1)对一切i,jE0Pij(m)1(2)对一切iEjEPij(m)=1(3)对一切i,jEpij(0)=δij={1,i=j0,i=j


马氏链模型

描述一类重要的随机动态系统(过程)的模型

  • 系统在每个时期所处的状态是随机的
  • 从一时期到下时期的状态按一定概率转移
  • 下时期状态只取决于本时期状态和转移概率
    已知现在,将来与过去无关(无后效性)

马氏链 (Markov Chain)——时间、状态均为离散的随机转移过程

当实际问题可以用马氏链来描述时,首先要确定它的状态空间参数集合,然后确定它的一步转移概率

关于这一概率的确定,可以由问题的内在规律得到,也可以由过去经验给出,还可以根据观察数据来估计。


转移概率的极限分布

  1. 柯尔莫哥洛夫-开普曼定理:
    对于马尔可夫链而言, p i j ( n + m ) = ∑ k ∈ E p i k ( n ) p k j ( m ) 对于马尔可夫链而言,p_{ij}(n+m)=\sum_{k∈E}p_{ik}(n)p_{kj}(m) 对于马尔可夫链而言,pij(n+m)=kEpik(n)pkj(m)

  2. 设P是转移矩阵(概率向量为行向量),P ^ (0)是初始的概率分布。则第n步的概率发布为P ^ (0) P ^ n

  3. 若P是正则的,转移概率P_ij ^ (n)存在与i无关的极限lim_n->∞P_ij ^ (n)=π_j,则称此马尔可夫链具有遍历性

  4. 在3的基础上,若∑ _ j π _ j = 1,则称π ~ 为马尔可夫链的极限发布,同时它也是π ~ =π ~ P的唯一解


马氏链的基本方程

系统状态 X n = 1 , 2 , . . . k ( n = 0 , 1 , . . . ) 状态概率 a i ( n ) = P ( X n = i ) 转移概率 p i j = P ( X n + 1 = j ∣ X n = i ) 基本方程 a i ( n + 1 ) = ∑ j = 1 k a j ( n ) p j i , i = 1 , 2 , . . . , k ∑ i = 1 k a i ( n ) = 1 n = 0 , 1 , . . . p i j ≥ 0 , ∑ j = 1 k p i j = 1 , i = 1 , 2 , . . . , k a ( n ) = ( a 1 ( n ) , a 2 ( n ) , . . . , a k ( n ) )  状态概率向量 P = { p i j } k × k  转移概率矩阵(非负,行和为 1 ) a ( n + 1 ) = a ( n ) P —— > a ( n ) = a ( 0 ) P n 系统状态X_n=1,2,...k(n=0,1,...)\\ 状态概率a_i(n)=P(X_n=i)\\ 转移概率p_{ij}=P(X_{n+1}=j|X_n=i)\\ 基本方程 \quad a_i(n+1)=\sum_{j=1}^ka_j(n)p_{ji},i=1,2,...,k\\ \sum_{i=1}^ka_i(n)=1\quad n=0,1,...\quad p_{ij}≥0,\sum_{j=1}^kp_{ij}=1,i=1,2,...,k\\ a(n)=(a_1(n),a_2(n),...,a_k(n)) ~ 状态概率向量\\ P=\{p_{ij}\}_{k×k} ~ 转移概率矩阵(非负,行和为1)\\ a(n+1)=a(n)P——>a(n)=a(0)P^n 系统状态Xn=1,2,...k(n=0,1,...)状态概率ai(n)=P(Xn=i)转移概率pij=P(Xn+1=jXn=i)基本方程ai(n+1)=j=1kaj(n)pji,i=1,2,...,ki=1kai(n)=1n=0,1,...pij0,j=1kpij=1,i=1,2,...,ka(n)=(a1(n),a2(n),...,ak(n)) 状态概率向量P={pij}k×k 转移概率矩阵(非负,行和为1a(n+1)=a(n)P——>a(n)=a(0)Pn


马氏链的两个重要类型

  1. 正则链~从任一状态出发经有限次转移能以正概率到达另外任一状态
    正则链 ↔ ∃ N , P N > 0 正则链 → ∃ w , a ( n ) → w ( n → ∞ ) 正则链↔∃N,P^N>0\\ 正则链→∃w,a(n)→w(n→∞) 正则链N,PN>0正则链w,a(n)w(n)
    w~稳态概率

    1. w满足wP=w
    2. w满足∑wi=1
  2. 吸收链~存在吸收状态(一旦到达就不会离开的状态i,p_ii=1),且从任一非吸收状态出发经有限次转移能以正概率到达吸收状态。

    有r 个吸收状态的吸收链的转移概率阵标准形式
    P = [ I r × r O R S ] R 有非零元素 P= \begin{bmatrix} I_{r×r} & O\\ R & S\\ \end{bmatrix} \quad R有非零元素 P=[Ir×rROS]R有非零元素
    其中I为r阶单位阵,O为r×s零阵,R为s×r矩阵,S为s×s矩阵。

    (注:非标准形式可经对状态重新编号 )
    在吸收链中,令 M = ( I − Q ) − 1 = ∑ s = 0 ∞ Q S ,则 M 称为基矩阵。 在吸收链中,令M=(I-Q)^{-1}=\sum_{s=0}^∞Q^S,则M称为基矩阵。 在吸收链中,令M=(IQ)1=s=0QS,则M称为基矩阵。
    对具有标准形式转移矩阵的吸收链,可以证明以下定理:

    • 吸收链的基矩阵M 中的每个元素,表示从一个非吸收状态出发,过程达到每个非吸收状态的平均转移次数。

    • 令 y = ( y 1 , y 2 , . . . , y k − r ) = M e e = ( 1 , 1 , . . . , 1 ) T 则 y i 表示从第 i 个非吸收状态出发,被某个吸收状态吸收之前的平均转移次数。 令y=(y_1,y_2,...,y_{k-r})=Me \quad e=(1,1,...,1)^T\\ 则y_i表示从第i个非吸收状态出发,被某个吸收状态吸收之前的平均转移次数。 y=(y1,y2,...,ykr)=Mee=(1,1,...,1)Tyi表示从第i个非吸收状态出发,被某个吸收状态吸收之前的平均转移次数。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

L、fly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值