基于matlab的图像二值化

1 原理

        图像二值化的原理是将彩色或灰度图像转换为只包含两种颜色(通常是黑色和白色)的二值图像的过程。其关键是通过设定一个阈值,将图像中的像素点的灰度值与阈值进行比较,根据比较结果将像素点设置为白色或黑色。步骤如下:

  1. 选择阈值:首先,选择一个合适的阈值。这个阈值可以是固定的,也可以是基于图像的灰度直方图或统计分析得出的动态阈值。
  2. 灰度值比较:然后,遍历图像的每个像素点,将其灰度值与设定的阈值进行比较。
  3. 设置颜色
    • 如果像素点的灰度值大于阈值,则将该像素点设置为白色(通常用最大灰度值表示,如255)。
    • 如果像素点的灰度值小于或等于阈值,则将该像素点设置为黑色(通常用最小灰度值表示,如0)。
  4. 完成二值化:继续遍历所有像素点,直到处理完整个图像,从而完成二值化过程。

        图像二值化是一种简单而有效的图像处理技术,通过设定阈值和灰度值比较,将原始灰度图像转换为黑白二值图像,从而便于后续的目标识别、特征提取等处理。在实际应用中,阈值的选择对二值化效果至关重要,需要根据具体任务和数据特点进行合理设定。

2 代码

%% 二值化
figure;
I2 = imread('test.jpg');  
if size(I2, 3) == 3  
    I2 = rgb2gray(I2);  
end  
    
% 显示原始图像  
subplot(1,2,1);imshow(I2);  
  
% 使用graythresh函数计算灰度阈值  
level = graythresh(I2);  
BW = im2bw(I2, level);  
  
% 显示二值化后的图像  
subplot(1,2,2);imshow(BW);  

3 运行结果

cff85e282d22491da553669649f85a4c.jpeg

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值