迷宫问题【洛谷P1238】

该文描述了一个编程问题,涉及到在一个m×n的迷宫中寻找从起点到终点的所有可行路径。路径只能按左、上、右、下的顺序移动,且不允许经过已走过的点。文章提供了输入输出示例,并展示了一种基于回溯算法的解决方案。
摘要由CSDN通过智能技术生成

写这题主要是记一下题型,(迷宫基础题、普适题型)

有一个 m×n 格的迷宫(表示有 m 行、n 列),其中有可走的也有不可走的,如果用 11 表示可以走,00 表示不可以走,文件读入这 m×n 个数据和起始点、结束点(起始点和结束点都是用两个数据来描述的,分别表示这个点的行号和列号)。现在要你编程找出所有可行的道路,要求所走的路中没有重复的点,走时只能是上下左右四个方向。如果一条路都不可行,则输出相应信息(用 −1−1 表示无路)。

优先顺序:左上右下。数据保证随机生成。

输入格式

第一行是两个数 m,n(1<m,n<15),接下来是 m 行 n 列由 11 和 00 组成的数据,最后两行是起始点和结束点。

输出格式

所有可行的路径,描述一个点时用 (x,y) 的形式,除开始点外,其他的都要用 -> 表示方向。

如果没有一条可行的路则输出 −1−1。

输入输出样例

输入

5 6
1 0 0 1 0 1
1 1 1 1 1 1
0 0 1 1 1 0
1 1 1 1 1 0
1 1 1 0 1 1
1 1
5 6

输出

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

#include<iostream>//个人不建议使用万能头文件,容易报错;(本篇代码使用了,编译通不过)
#include<cstdio>
#include<cstdlib>
#include<cmath>
using namespace std;
int sum[50000][2];//用来记录每步的坐标;
int ax,ay,bx,by,k,pd;//ax,ay代表起点,bx,by代表终点,k是步数;
int cx[4]={0,-1,0,1};
int cy[4]={-1,0,1,0};//四个方向,左上右下;
bool temp[17][17];//标记:已经走过的路;
int map[17][17];//地图:1可走,0不可走;
void print()//输出函数;
{
    if(pd==0)//pd:判断是否有解,有解=1,无解=0;
    {
        pd=1; 
    }
    for(int h=0;h<=k-1;h++)
    cout<<"("<<sum[h][0]<<","<<sum[h][1]<<")"<<"->"; //输出中途步骤;
    cout<<"("<<bx<<","<<by<<")"<<endl;//输出终点;
}
void walk(int x,int y)//搜索回溯主体;
{
    if(x==bx&&y==by)//到达边界;
    {
        print();//输出解;
        return;
    }
    else
    {
        for(int i=0;i<=3;i++)
        if(map[x+cx[i]][y+cy[i]]==1&&temp[x+cx[i]][y+cy[i]]==0)//判断下一步是否可以走,一方面判断路是否可走,另一方面判断自己是否走过这条路;
        {
            temp[x][y]=1;//走过的路打上标记;
            sum[k][0]=x;
            sum[k][1]=y;//记录当前的坐标
            k++;//步数加1;
            walk(x+cx[i],y+cy[i]);
            temp[x][y]=0;
            k--;
            //回溯,这里的sum可以不用恢复;
        }
    }
}
int main()
{
    int m,n;//矩阵长宽;
    cin>>m>>n;
    for(int i=1;i<=m;i++)
        for(int j=1;j<=n;j++)
            cin>>map[i][j];//输入地图;
            
    cin>>ax>>ay;//起点;
    cin>>bx>>by;//终点;
    walk(ax,ay);//开始搜索;
    if(pd==0)//判断是否有解,如果没有解,输出-1;
    cout<<"-1";
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值