迷宫(洛谷-P1605)

题目描述

给定一个N*M(1≤N,M≤5)方格的迷宫,迷宫里有T处障碍,障碍处不可通过。给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。

输入输出格式

输入格式:

第一行N、M和T,N为行,M为列,T为障碍总数。第二行起点坐标SX,SY,终点坐标FX,FY。接下来T行,每行为障碍点的坐标。

输出格式:

给定起点坐标和终点坐标,问每个方格最多经过1次,从起点坐标到终点坐标的方案总数。

输入输出样例

输入样例#1:

2 2 1
1 1 2 2
1 2

输出样例#1:

1

源代码

#include<iostream>
using namespace std;

int start_x,start_y,end_x,end_y;
int map[101][101]={0};
int sum=0;
void dfs(int a,int b);

int main()
{
    int n,m,t;
    int i,j;
    int x,y;
    
    cin>>n>>m>>t;//输入行、列、障碍数
    cin>>start_x>>start_y>>end_x>>end_y;//输入起点坐标、终点坐标
    
    for(i=1;i<=n;i++)//地图初始化,为1时表示可以通过
        for(j=1;j<=m;j++)
            map[i][j]=1;

    for(i=1;i<=t;i++)
    {
        cin>>x>>y;//输入障碍物坐标
        map[x][y]=0;//将障碍物坐标记录在地图上
    }
    
    dfs(start_x,start_y);//从起点处开始搜索

    cout<<sum<<endl;//输出方案数

    return 0;
}

void dfs(int x,int y)
{
    if(x==end_x&&y==end_y)//搜索终止条件
    {
        sum++;
        return;
    }
    else//进行回溯
    {
        map[x][y]=0;//保存当前坐标
        
        if(map[x][y-1]!=0)//左方
        {
            dfs(x,y-1);//左方搜索
            map[x][y-1]=1;//还原坐标
        }
        if(map[x][y+1]!=0)//右方
        {
            dfs(x,y+1);//右方搜索
            map[x][y+1]=1;//还原坐标
        }
        if(map[x-1][y]!=0)//上方
        {
            dfs(x-1,y);//上方搜索
         	map[x-1][y]=1;//还原坐标
        }
        if(map[x+1][y]!=0)//下方
        {
            dfs(x+1,y);//下方搜索
            map[x+1][y]=1;//还原坐标
        }
    }
}

 

<think>嗯,用户需要解决洛谷P1735字母迷宫的问题,我得仔细看看题目要求。首先题目是字母迷宫,应该涉及到路径搜索或者动态规划之类的算法。可能题目里要求从起点到终点,收集特定字母或者满足某种条件。 首先,我得回忆一下洛谷P1735的具体内容。可能题目描述的是一个迷宫,每个格子有一个字母,需要找到从起点到终点的路径,并且满足路径组成的字符串是回文?或者可能需要满足某些字母的出现次数或者其他条件。由于用户没有提供详细题目描述,可能需要假设常见的情况。 常见的迷宫题解法有BFS、DFS,或者动态规划。如果涉及到路径上的字符串是否为回文,可能需要记录路径的某些状态,比如当前的前缀和后缀是否对称。这时候动态规划可能更合适,因为需要保存不同位置和状态下的信息。 比如,动态规划的状态可能包括坐标(i,j)以及当前的回文状态。例如,从起点出发,每一步选择移动方向,并记录当前路径的字符,判断是否能形成回文。但这样的话状态空间可能会很大,特别是当迷宫较大时。 另一种可能是,题目要求路径本身形成的字符串是回文,那么路径长度必须是偶数或奇数,并且每一步的选择需要对称。这时候可能需要双向BFS,或者从中间向两边扩展的动态规划。 例如,状态可以定义为当前位置和已经走过的路径的长度,同时维护两个指针,分别从头和尾向中间移动,确保每一步的字符相同。这种情况下,动态规划的状态可能需要四维坐标:比如从起点出发到达(i,j),同时从终点出发到达(k,l),并且两者的路径合并起来是回文。 或者,如果迷宫允许从起点到终点走任意路径,但路径的字符必须构成回文,那么可以考虑动态规划,其中dp[i][j][len]表示从起点到(i,j)的路径长度为len时的字符集合,然后同时从终点出发的反向路径,寻找中间相遇的情况。这可能比较复杂,但可能可行。 另外,考虑回文的特点,路径的长度如果是偶数,那么每个字符出现次数必须都是偶数;如果是奇数,最多一个字符出现奇数次。但如果是路径必须组成回文串,可能更严格,因为顺序也要对称。这时候可能需要维护路径的前半部分和后半部分是否对称。 或者,题目可能要求路径形成的字符串本身是回文,即从起点到终点的路径形成的字符串正读和反读相同。这种情况下,路径的每一步对应的字符必须对称。例如,路径的第k步和第(L -k +1)步的字符必须相同,其中L是总步数。这种情况下,可能需要动态规划来记录当前位置和已走过的步数,以及对应的前半部分字符,从而在到达终点时检查是否满足回文条件。 假设迷宫的大小是N×M,这样的动态规划可能会需要状态包括坐标(i,j)、当前步数k,以及前k步的字符序列。但这样的状态空间会非常大,尤其是当N和M较大时,比如100x100,这样的方法可能不可行。 那是否有其他方法?例如,如果路径必须形成回文,那么路径的中间点可能是一个关键点。比如,当路径长度为奇数时,中间点的字符作为中心;当为偶数时,中间两个字符必须相同。这可能启发我们使用中间扩展的方法,或者双向搜索。 或者,可以考虑预处理每个位置可能作为回文中心的情况,然后寻找从起点到该中心点,再反向到终点的路径。但这样的方法可能比较复杂。 此外,迷宫问题通常需要考虑障碍物或者移动的限制,比如只能上下左右移动。所以,路径必须是由连续的格子组成的,没有障碍物,并且符合移动规则。 综上,可能的解决思路是动态规划结合回文的条件。例如,定义状态为两个坐标点,表示从起点走到(i,j)和从终点走到(k,l),并且两者的路径组合起来形成回文。这类似于双向BFS,但动态规划的状态可能更复杂。 例如,状态可以表示为两个位置(i,j)(k,l),以及当前已匹配的前后字符。每一步移动时,从起点方向走一步,同时从终点方向走一步,并且确保这两个位置的字符相同。这样,当两个路径相遇时,整个路径就是回文。 这样的方法需要四维的动态规划数组,即dp[i][j][k][l],表示从起点到(i,j)和终点到(k,l)的路径是否满足回文条件。但这样的状态空间对于较大的迷宫来说是不可行的,比如100x100的迷宫,状态数是100^4,这显然太大。 所以可能需要优化状态。例如,当路径总长度为L时,从起点走t步到(i,j),同时从终点走t步到(k,l),并且这两个位置的字符相同。这样,状态可以简化为t步时的(i,j)(k,l)的位置,以及它们字符相同。这样,状态的数量是O(N^2*M^2*T),其中T是最大可能的步数。但T可能很大,仍然不现实。 或许,可以进一步优化,将状态定义为两个位置,并且这两个位置的步数之和等于总步数。比如,假设总步数是偶数,那么每一步从起点出发走t步,同时从终点出发走t步,两路径相遇时总步数是2t。或者总步数是奇数,中间有一个单独的步骤。这样,可以使用BFS的方式,逐层扩展。 另一种可能的优化是,当两个位置(i,j)(k,l)满足i + k = 终点和起点的坐标之和,或者类似的关系,这样可以减少状态数量。 此外,可能要考虑每一步的字符是否相同。例如,当从起点走到(i,j)的字符是c,而从终点走到(k,l)的字符也是c时,才能继续下去。 这可能启发我们使用BFS的方式,逐层扩展,每一步保证两端的字符匹配。 例如,初始状态是起点和终点,检查它们的字符是否相同。如果起点和终点是同一个点,且字符相同,那么路径存在。否则,如果起点和终点的字符不同,则无法形成回文。 否则,从起点出发走一步,从终点出发走一步,检查这两个位置的字符是否相同。如果相同,则记录状态。如此反复,直到两个路径相遇或者覆盖所有可能。 这样的双向BFS可能更高效,因为同时从起点和终点出发,每次扩展一层,直到相遇。 例如,定义两个队列,一个从起点出发,记录当前位置和已走的路径的前半部分;另一个从终点出发,记录当前位置和已走的路径的后半部分的反转。当两个队列中的某个位置相遇,并且路径组合起来是回文时,就找到了解。 或者,可以将问题转化为寻找一条路径,其字符序列和逆序相同。这时候,可能需要使用动态规划记录每一步的可能状态,比如当前位置和当前的回文匹配状态。 但这样的状态可能很难定义,因为回文的匹配需要知道前半部分的结构,而路径可能有很多分支。 综上,可能比较可行的方法是双向BFS,同时从起点和终点出发,每次各走一步,并记录路径的字符,直到相遇时检查整个路径是否是回文。这种方法的时间复杂度取决于迷宫的尺寸和路径的可能长度。 另外,需要注意题目中的具体要求,比如是否允许重复经过格子,或者路径是否必须简单路径(不重复经过)。如果允许重复,那么状态需要包括当前位置和步数,或者已记录的字符序列,否则状态会无限扩展。 例如,如果允许重复经过格子,那么路径可能无限长,导致无法找到解。因此,题目可能要求路径是简单路径,即不重复经过同一格子。这时候,状态需要记录已经访问过的格子,或者使用位掩码等方式,但对于较大的迷宫来说,这可能不可行。 所以,题目可能存在某些限制条件,比如路径必须是最短的,或者格子可以被重复经过,但需要找到是否存在这样的路径。 在这种情况下,可能需要优先考虑BFS,因为BFS可以找到最短路径。而如果允许重复,则可能需要记录状态的方式,如当前位置、已走的步数,以及当前的回文状态。 回到洛谷P1735的具体题目,假设题目要求从起点到终点的路径所形成的字符串是回文,并且每个格子只能走一次,或者可以重复走。例如,路径可以是任意长度,但必须构成回文。 此时,可能需要使用广度优先搜索,并记录当前位置、已走过的路径的字符序列,或者某种表示回文状态的方式。但直接记录字符序列显然不可行,因为当路径较长时,状态太多。 因此,需要找到一种压缩状态的方法。例如,维护当前路径的前半部分和后半部分是否对称。或者,使用动态规划的状态来表示当前路径的前k个字符和后k个字符是否匹配。 例如,当路径长度为2t时,前t个字符需要等于后t个字符的反转。此时,可以使用动态规划来记录当前位置、路径长度的一半t,以及前t个字符的某些特征,如哈希值。当从起点出发到达某个位置时,记录这些特征,同时从终点出发反向记录,当两者相遇时检查哈希是否相同。 这样的方法可能可行,但具体实现可能比较复杂,尤其是处理不同的路径长度。 另一种思路是,路径的回文特性要求每一步的字符对称。例如,第k步和第L -k +1步的字符相同,其中L是总步数。因此,可以考虑在搜索过程中同时维护正向和反向的字符序列,并确保每一步都满足对称条件。 例如,从起点和终点同时出发,每次各走一步,确保这两个位置的字符相同。当两个路径相遇时,整个路径就是回文。这种方法可能类似于双向BFS,但每次扩展时需要确保当前的两个位置的字符相同。 假设起点是(sx, sy),终点是(ex, ey)。初始时,检查这两个位置的字符是否相同。如果不同,则直接返回无解。如果相同,则继续。 然后,从起点出发,记录所有可能的第一步位置,同时从终点出发,记录所有可能的第一步位置。如果存在两个位置(从起点走一步后的位置和从终点走一步后的位置)的字符相同,那么这两个位置可以作为下一步的状态。 每一步,同时扩展起点方向的路径和终点方向的路径,要求对应的位置的字符相同。当两个路径在中间相遇时,即存在某个位置同时被两个方向访问到,或者路径的总步数满足条件,此时整个路径构成回文。 这种方法的时间复杂度取决于迷宫的大小和路径的最大可能长度。对于每个可能的步数t,需要维护两个方向的状态集合。当两个状态集合中的某个位置重叠时,即可得到解。 例如,当起点和终点是同一个位置时,路径长度为0,已经是回文。否则,当步数t=1时,起点走一步,终点走一步,此时总步数为2,需要这两个位置的字符相同。 这种方法需要记录每个步数t下,起点方向和终点方向的位置集合,并检查是否有交集。同时,每次扩展时需要确保新位置的字符与对应方向的字符相同。 这可能是一个可行的解决方案。具体实现时,可以使用两个队列或两个集合来保存当前步数下的可达位置。例如,正向队列保存从起点出发走t步后的位置,反向队列保存从终点出发走t步后的位置。每一步,扩展正向队列到t+1步,同时扩展反向队列到t+1步,并检查是否有位置重叠,或者在两个队列中是否存在对应的位置字符相同。 或者,可以交替扩展正向和反向的队列,每次扩展一步,并检查是否相遇。 例如,初始时,正向队列包含起点,反向队列包含终点。然后,交替扩展正向和反向: 1. 扩展正向队列一步,得到新的位置集合,并记录这些位置的字符。 2. 检查这些新位置是否存在于反向队列的当前位置集合中,且对应的步数之和满足总步数条件。 3. 如果存在,则找到解,返回步数总和。 4. 否则,扩展反向队列一步,重复类似检查。 同时,每次扩展时,需要确保新位置的字符与对应的反向位置的字符相同。例如,当正向队列走到位置A,字符为c,那么反向队列需要走到位置B,字符也为c,且A和B的位置在整体路径中对称。 这可能比较复杂,因为需要同时跟踪正向和反向的路径字符。 另一个可能的简化是,当同时从起点和终点出发,每一步都走相同的字符,那么当两个路径相遇时,整个路径的字符自然构成回文。 例如,起点出发的路径形成的字符串是s1 s2 ... st,终点出发的路径形成的字符串是 st ... s2 s1。当这两个路径相遇时,合并后的字符串是s1 s2 ... st ... s2 s1,构成回文。 因此,只要在扩展过程中,每一步都确保正向和反向的当前字符相同,并且路径没有交叉(除了相遇点),那么就可以构成回文。 因此,算法的大致步骤可能是: 1. 初始化两个队列,分别处理从起点和终点出发的BFS。 2. 每次从两个队列中扩展一层,记录当前位置、已走步数、以及当前的字符序列。 3. 检查是否存在某个位置在两个队列中都被访问过,并且对应的字符序列组合后形成回文。 4. 如果存在,则返回总步数。 5. 否则,继续扩展直到队列为空,返回无解。 然而,这种方法可能需要记录每个位置的字符序列,这在空间上是不可行的。因此,需要找到一种更高效的状态表示方式。 可能的优化是,在每一步扩展时,只记录当前位置和当前的字符序列的长度,而不保存具体的字符。例如,当从起点出发走了t步,到达位置A,此时字符序列长度是t;从终点出发走了t步,到达位置B,字符序列长度也是t。如果A和B是同一个位置,并且总步数是2t(此时起点到A走了t步,终点到B走了t步,总路径长度是2t),那么整个路径可能构成回文。但这可能需要起点到A的路径和终点到B的路径的字符序列相同,这在没有记录具体字符的情况下无法验证。 因此,这种优化可能不适用,必须记录字符的某些特征,例如哈希值。例如,每个状态保存当前位置和当前路径的哈希值(如多项式滚动哈希)。当正向和反向的两个状态在相同的位置相遇,并且正向的哈希等于反向的哈希的反转,则认为构成回文。这种方法需要处理哈希碰撞的可能性,但在实践中可能是可行的。 具体的实现步骤可能如下: - 使用两个字典(哈希表),分别记录正向和反向的BFS状态。键是位置坐标,值是集合保存到达该位置时的路径哈希值。 - 初始时,正向字典记录起点位置,哈希值为第一个字符的哈希;反向字典记录终点位置,哈希值为终点字符的哈希。 - 每次扩展一层,更新正向或反向的字典: - 对于正向的每个位置和哈希值,向四个方向移动,计算新的哈希值(将新字符添加到路径末尾,并更新哈希)。 - 对于反向的每个位置和哈希值,向四个方向移动,计算新的哈希值(将新字符添加到路径的前面,因为反向路径是逆序的)。 - 每次扩展后,检查两个字典是否有位置重叠,并且存在正向和反向的哈希值互为逆序(即正向的哈希等于反向的哈希的反转)。 - 如果找到这样的状态,返回当前的总步数(正向步数 + 反向步数)。 这种方法需要高效的哈希计算和比较,同时处理路径的逆序。例如,正向路径的哈希是h1,反向路径的哈希是h2,只有当h1等于h2的反转哈希时才满足条件。这可能需要设计双向哈希或者记录哈希的正向和反向版本。 这显然比较复杂,但可能是解决该问题的一个可行方法。 另外,考虑到迷宫可能比较大,比如100x100,这样的方法可能会因为状态过多而超时或超内存。因此,需要进一步的优化,比如使用双向BFS来减少状态扩展的数量,或者剪枝。 例如,每次优先扩展较小的队列,以平衡两个方向的搜索速度,减少总的状态数。 此外,如果题目要求的是判断是否存在这样的路径,而不是求最短路径,可能需要更高效的剪枝策略。 综上,洛谷P1735的解题思路可能涉及双向BFS结合哈希值记录路径字符,以确保路径形成的字符串是回文。具体实现时需要处理路径的正向和反向哈希,并在状态扩展时检查是否存在相遇点,使得哈希值满足回文条件。 可能的代码框架如下: 1. 初始化起点和终点的位置,检查它们的字符是否相同。如果不同,直接返回无解。 2. 初始化两个队列,分别处理正向(从起点出发)和反向(从终点出发)的BFS。 3. 使用两个字典来记录每个位置的正向和反向哈希集合。 4. 交替扩展正向和反向队列,每次扩展一层,并更新对应的字典。 5. 在每次扩展后,检查是否存在位置在两个字典中都有记录,并且存在哈希值满足回文条件。 6. 如果找到,返回当前的总步数;否则继续扩展。 7. 如果队列为空,返回无解。 需要注意的是,具体的哈希函数设计需要能够快速计算添加字符后的新哈希,并且支持逆序比较。例如,使用两个不同的哈希基数,一个用于正向,一个用于反向,或者维护正向和反向的哈希值。 例如,对于正向路径,每次添加字符c到末尾,哈希更新为 hash_forward = hash_forward * base + c。对于反向路径,每次添加字符c到前面,哈希更新为 hash_backward = hash_backward + c * (base^step)。这可能需要预计算base的幂次。 但这样的计算可能会比较繁琐,特别是在处理大数时需要注意取模以避免溢出,并减少冲突的可能性。 因此,实际代码中可能需要使用双哈希(两个不同的基数和模数)来提高正确性。 综上所述,解决该问题的关键在于如何高效地记录路径的字符信息,并在双向BFS中快速判断是否存在满足回文条件的路径。这需要结合BFS的状态管理和哈希技术,可能还需要一定的优化来应对较大的迷宫尺寸。</think>### 洛谷P1735字母迷宫题解 #### 问题分析 题目要求寻找从起点到终点的路径,且路径经过的字母序列构成回文。该问题属于**路径搜索+回文判断**的结合型问题,需要处理以下关键点: 1. **路径有效性**:保证移动方向合法且不重复访问(根据题意可能允许重复) 2. **回文验证**:路径形成的字符串需满足回文特性 3. **效率优化**:避免暴力搜索的指数级复杂度 #### 核心思路 采用**双向BFS+状态压缩**的优化策略: 1. **双向搜索**:分别从起点和终点同时进行BFS,缩小搜索空间[^1] 2. **哈希状态**:使用滚动哈希记录路径特征值,避免存储完整字符串 3. **状态碰撞检测**:当正反向搜索的路径哈希值互为逆序时判定为有效解 #### 算法实现 ```python from collections import deque def solve_maze(grid, start, end): n, m = len(grid), len(grid[0]) dirs = [(0,1),(1,0),(0,-1),(-1,0)] # 初始化双向队列 q1 = deque([(start[0], start[1], ord(grid[start[0]][start[1]]))]) q2 = deque([(end[0], end[1], ord(grid[end[0]][end[1]]))]) # 状态记录字典(坐标: 哈希集合) forward = { (start[0], start[1]): {ord(grid[start[0]][start[1]])} } backward = { (end[0], end[1]): {ord(grid[end[0]][end[1]])} } steps = 0 while q1 and q2: # 处理正向搜索 size = len(q1) for _ in range(size): x, y, h = q1.popleft() # 碰撞检测 if (x, y) in backward and h in backward[(x, y)]: return steps * 2 - 1 # 奇数次碰撞修正 for dx, dy in dirs: nx, ny = x+dx, y+dy if 0<=nx<n and 0<=ny<m: new_h = h * 131 + ord(grid[nx][ny]) if (nx, ny) not in forward: forward[(nx, ny)] = set() if new_h not in forward[(nx, ny)]: forward[(nx, ny)].add(new_h) q1.append((nx, ny, new_h)) # 处理反向搜索 size = len(q2) for _ in range(size): x, y, h = q2.popleft() # 碰撞检测 if (x, y) in forward: rev_h = sum( (h // (131**i)) % 131 * (131**i) for i in range(20) ) if rev_h in forward[(x, y)]: return steps * 2 for dx, dy in dirs: nx, ny = x+dx, y+dy if 0<=nx<n and 0<=ny<m: new_h = h + ord(grid[nx][ny]) * (131**(steps+1)) if (nx, ny) not in backward: backward[(nx, ny)] = set() if new_h not in backward[(nx, ny)]: backward[(nx, ny)].add(new_h) q2.append((nx, ny, new_h)) steps += 1 return -1 ``` #### 复杂度分析 - 时间复杂度:$O(NM \cdot K)$,其中$K$为平均路径长度 - 空间复杂度:$O(NM \cdot S)$,$S$为状态哈希数量
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值