系列文章目录
前言
十二月啦,开始!!!!
12.02ing
每日一题
1
讲道理,这个题真心绕,看不懂,得亏评论区老哥:按照arr
数组从左到右的顺序遍历各个arr[i]
,涂抹这个值在矩阵中对应位置的网格,一旦你发现它所在的行或者列满员了,就返回这个i
。
class Solution {
public int firstCompleteIndex(int[] arr, int[][] mat) {
// 初始化变量
int i = 0, j, m = mat.length, n = mat[0].length, mn = m * n;
int[] positionRow = new int[mn + 1], positionColumn = new int[mn + 1], row = new int[m];
// 遍历矩阵的每一列
while (i < n) {
j = 0;
// 遍历矩阵的每一行
while (j < m) {
// 记录每个数字在矩阵中的行和列的位置
positionRow[mat[j][i]] = j;
positionColumn[mat[j++][i]] = i;
}
// 将该列涂色数置为0,继续下一列
mat[0][i++] = 0;
}
// 遍历数组 arr
for (i = 0; i < mn; i++) {
// 如果该数字所在行的涂色数达到 n,或者该数字所在列的涂色数达到 m,则满足条件,返回结果
if (++row[positionRow[arr[i]]] == n) break;
if (++mat[0][positionColumn[arr[i]]] == m) break;
}
// 返回结果
return i;
}
}
2
这个不对,想着动态更新车上的人数,但其实不需要,更新上车下车的人就好了,看第二个代码就简单很多。
class Solution {
public boolean carPooling(int[][] trips, int capacity) {
int longest = 0;
// 找出最远要到的地方
for (int i = 0; i < trips.length; i++) {
longest = Math.max(longest, trips[i][2]);
}
// 用 save 数组去记录每一个地方有多少人
int[] save = new int[longest + 1];
// 遍历每个行程
for (int i = 0; i < trips.length; i++) {
for (int j = trips[i][1]; j <= trips[i][2]; j++) {
// 上车更新人数
save[j] += trips[i][0];
// 如果车上的人多于位置的数量 capacity,则返回 false
if (save[j] > capacity) {
return false;
}
// 下车更新人数
if (j == trips[i][2]) {
save[j] -= trips[i][0];
}
}
}
return true;
}
}
更新车上有的座位数,通过判断capacity是否还大于等于零,说明还能坐得下。否则就是false。
class Solution {
public boolean carPooling(int[][] trips, int capacity) {
int[]n = new int[1001];
int max = 0;
for (int[] trip : trips) {
n[trip[1]] += trip[0];
n[trip[2]] -= trip[0];
if(trip[2] > max) max = trip[2];
}
for (int i = 0; i <= max ; i++) {
capacity -= n[i];
if(capacity < 0) return false;
}
return true;
}
}
3
首先,我们计算前 k 张卡片的和,并将其保存在 sum
中。然后,我们从右侧挑选出 k 张卡片,同时从左侧剔除对应的卡片,不断更新 temp
的值,并将其与 sum
比较,保留较大的值。
这样做的原理是:在一共有 n 张卡片中,我们需要挑选 k 张卡片,即从 n-k 张卡片中去掉 k 张,这样剩余的 k 张卡片的分数就是最大的。
实现上的注意点:
-
初始化
temp
的值为前 k 张卡片的和,然后在循环中不断更新右侧加入卡片和左侧剔除卡片的操作。 -
利用
Math.max
保留最大的分数。 -
循环的范围是 1 到 k,因为第一轮循环中已经计算了前 k 张卡片的和。
这个算法的时间复杂度是 O(k),因为我们只进行了一次循环。空间复杂度是 O(1),因为只使用了常数个额外的变量。
class Solution {
public int maxScore(int[] cardPoints, int k) {
int n = cardPoints.length;
int left = 0;
int right = n - k;
int sum = 0;
for (int i = 0 ; i < k; i++){
sum += cardPoints[i];
}
int temp = sum;
for(int i = 1; i <= k; i++){
temp += cardPoints[n - i] - cardPoints[k - i];
sum = Math.max(temp, sum);
}
return sum;
}
}
4
1038. 从二叉搜索树到更大和树 - 力扣(LeetCode)
在这个算法中,我们使用中序遍历的反向顺序,即右-中-左,来遍历 BST。对于每个节点,我们累加之前的节点的值,将累加的值赋给当前节点。
以下是算法的主要步骤:
-
初始化一个全局变量
sum
为 0,用于保存累加的值。 -
递归地遍历 BST,但是顺序是右-中-左。这可以确保我们在访问当前节点时,已经访问了所有较大值的节点。
-
对于每个节点,先递归遍历右子树,然后更新
sum
,累加当前节点的值,最后递归遍历左子树。 -
返回根节点。
这个算法的时间复杂度是 O(N),其中 N 是 BST 中的节点数,因为我们需要访问所有节点。空间复杂度是 O(H),其中 H 是树的高度,因为递归调用会使用栈空间。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int sum = 0;
public TreeNode bstToGst(TreeNode root) {
dfs(root);
return root;
}
private void dfs(TreeNode root){
if(root == null){
return;
}
dfs(root.right);
root.val += sum;
sum = root.val;
dfs(root.left);
}
}
5
2477. 到达首都的最少油耗 - 力扣(LeetCode)
在这个问题中,有一个包含 n
个城市的网络,城市之间由道路连接。每个城市中有一个旅行者,他们需要一起旅行。每个城市中有一辆车,最大载客量为 seats
。目标是在每个城市选择一个旅行者来驾驶车辆,以最小化总的燃料成本。
使用深度优先搜索(DFS)来遍历城市网络,并计算每个城市的最小燃料成本。在每个城市,对于每条与之相连的道路,递归地计算与之相连的城市的总旅行者数。然后,根据最大载客量 seats
,计算需要的车辆数量,将其加到全局变量 ans
中。最后,返回该城市的总旅行者数。
以下是算法的主要步骤:
-
创建一个邻接表来表示城市网络,使用数组
heads
表示每个城市的邻接链表。 -
在
minimumFuelCost
方法中,遍历道路数组,构建邻接表。 -
使用深度优先搜索(DFS)遍历城市网络。在DFS过程中,对于每个城市,递归计算与之相连的城市的总旅行者数,并根据最大载客量
seats
计算需要的车辆数量,将其加到全局变量ans
中。 -
返回总的燃料成本
ans
。
这个算法的时间复杂度取决于城市网络的大小,因为需要遍历所有的城市和道路。DFS 的时间复杂度为 O(N),其中 N 是城市的数量。空间复杂度也与城市网络的大小相关。
/**
* Definition for a directed road with two cities.
* Each road connects two cities and can be traversed in both directions.
*/
class Solution {
int[] edges = null; // 存储边的数组,用于表示每个城市的邻接链表
int[] next = null; // 存储下一个相邻城市的索引的数组
int[] heads = null; // 存储每个城市的邻接链表的头节点索引的数组
int total = 1; // 总边数,初始值为1
int capacity = 0; // 车辆的最大载客量
long ans = 0L; // 最小燃料成本,初始值为0
/**
* Helper method to add an undirected road between two cities to the adjacency list.
*/
private void add(int u, int v) {
edges[++total] = v; // 将城市 v 添加到城市 u 的邻接链表中
next[total] = heads[u]; // 更新城市 u 的邻接链表头节点
heads[u] = total; // 更新城市 u 的邻接链表头节点为新添加的边的索引
}
/**
* Main method to calculate the minimum fuel cost.
*/
public long minimumFuelCost(int[][] roads, int seats) {
int n = roads.length + 1; // 总城市数,即道路数组的长度加1
edges = new int[n << 1]; // 初始化边的数组,长度为城市数的两倍
next = new int[n << 1]; // 初始化下一个相邻城市的索引数组
heads = new int[n]; // 初始化每个城市的邻接链表头节点数组
for (int[] road : roads) {
add(road[0], road[1]); // 添加道路的两个方向的边到邻接链表
add(road[1], road[0]);
}
this.capacity = seats; // 初始化车辆最大载客量
dfs(-1, 0); // 开始深度优先搜索
return ans; // 返回最小燃料成本
}
/**
* Depth-first search (DFS) method to traverse the city network and calculate the minimum fuel cost.
*/
private int dfs(int root, int node) {
int sum = 1; // 初始化当前城市的总旅行者数为1
for (int choice = heads[node]; choice > 0; choice = next[choice]) {
if ((choice ^ 1) == root) {
continue;
}
sum += dfs(choice, edges[choice]); // 递归计算与之相连的城市的总旅行者数
}
if (node != 0) {
ans += (sum - 1) / capacity + 1; // 根据最大载客量计算需要的车辆数量,加到总燃料成本中
}
return sum; // 返回当前城市的总旅行者数
}
}