前言
整体评价
VP了这场比赛, T3挺有意思的,反悔贪心其实蛮套路的。
A. 买苹果
思路: 签到
n, x = list(map(int, input().split()))
print (n // x)
B. 牛群
思路: 分类讨论
from collections import Counter
s = input()
cnt = Counter(s)
lists = sorted(cnt.values())
n = len(lists)
if n >= 5:
print ("No")
elif n == 4:
print ("Yes")
elif n == 3:
mz = lists[-1]
if mz >= 2:
print("Yes")
else:
print("No")
elif n == 2:
if lists[0] >= 2 and lists[1] >= 2:
print("Yes")
else:
print("No")
else:
print("No")
C. 货运公司
思路: 反悔堆
类似这种1vs1匹配,有限制,又求最大收益的题,往往是反悔堆解法。
当然也可以用网络流,但是反悔的思路更常见。
这种思路,也属于贪心中的,很特别的存在,有一定的套路在。
#include <bits/stdc++.h>
using namespace std;
struct T1 {
int p, w, idx;
bool operator< (const T1 &other) {
return this->p < other.p;
}
};
struct T2 {
int p, idx;
bool operator< (const T2 &other) {
return this->p < other.p;
}
};
struct T3 {
int w, idx1, idx2;
};
struct T3Comp {
bool operator() (const T3 &lhs, const T3 &rhs) const {
return lhs.w > rhs.w;
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
int n;
cin >> n;
vector<T1> vi;
for (int i = 0; i < n; i++) {
int p, w;
cin >> p >> w;
vi.push_back({p, w, i + 1});
}
std::sort(vi.rbegin(), vi.rend());
int m;
cin >> m;
vector<T2> arr(m);
for (int i = 0; i < m; i++) {
cin >> arr[i].p;
arr[i].idx = i + 1;
}
std::sort(arr.rbegin(), arr.rend());
priority_queue<T3, vector<T3>, T3Comp> pq;
long long res = 0;
int j = 0;
for (int i = 0; i < n; i++) {
if (j < m && vi[i].p <= arr[j].p) {
pq.push({vi[i].w, vi[i].idx, arr[j].idx});
res += vi[i].w;
j++;
} else {
if (!pq.empty() && vi[i].w > pq.top().w) {
auto item = pq.top();
res -= item.w;
pq.pop();
res += vi[i].w;
pq.push({vi[i].w, vi[i].idx, item.idx2});
}
}
}
cout << pq.size() << " " << res << endl;
while (!pq.empty()) {
auto item = pq.top();
pq.pop();
cout << item.idx1 << " " << item.idx2 << endl;
}
return 0;
}