《深度学习详解》Task 3 #Datawhale X 李宏毅苹果书 AI夏令营

批量归一化

批量归一化:直接改变误差表面。

特征归一化:给不同的维度,同样的数值范围,制造比较好的误差表面

Z值归一化 x ~ i r → x i r − m i σ i \tilde x_i^r \rightarrow \frac{x_i^r-m_i}{\sigma_i} x~irσixirmi

考虑深度学习

对z做归一化:

  1. 计算平均值 μ = 1 3 ∑ i = 1 3 z i \mu=\frac13\sum_{i=1}^3z^i μ=31i=13zi
  2. 计算标准差: σ = 1 3 ∑ i = 1 3 ( z i − μ ) 2 \sigma = \sqrt{\frac13\sum_{i=1}^3(z^i-\mu)^2} σ=31i=13(ziμ)2
  3. 进行归一化: z ~ i = z i − μ σ \tilde z^i = \frac{z^i-\mu}{\sigma} z~i=σziμ

做特征归一化的时候,把整个过程当做是网络的一部分。
实现的时候,使用一个批量里面的样本。

  1. z ^ i = γ ⊙ z ˉ i + β \hat z^i =\gamma \odot \bar z^i+ \beta z^i=γzˉi+β

归一化之后 z ˉ \bar z zˉ的平均值 一定是0。所有要加上 β \beta β γ \gamma γ 调整整个输出的分布,从而调整 z ^ \hat z z^的分布。

测试时的批量归一化

推断:测试

移动平均 μ ˉ ← p μ ˉ + ( 1 − p ) μ t \bar \mu \leftarrow p\bar \mu + (1-p)\mu^t μˉpμˉ+(1p)μt

内部协变量偏移

协变量偏移:训练集和预测集样本分布不一致的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值