《深度学习详解》Task 2 #Datawhale X 李宏毅苹果书AI夏令营

自适应学习率

范数:数轴是梯度的范数。也就是梯度这个向量的长度

训练一个网络,令它到现在参数的临界点附近,再根据特征值的正负号判断该临界点时鞍点还是局部最小值。——困难 ,难以实施。

自适应学习率:给每一个参数不同的学习率。‘

AdaGrad

AdaGrad: 能够根据梯度的大小自动调整学习率。梯度大,学习率减小,梯度小,学习率放大。

第一步: σ 0 i = ( g 0 i ) 2 = ∣ g 0 i ∣ 其中 g 0 i 为梯度,第一次更新参数使 θ 0 i 更新为 θ 1 i 时,与梯度大小无关 \sigma_0^i = \sqrt {(g_0^i)^2}=|g_0^i|\\其中g_0^i为梯度,第一次更新参数使\theta_0^i更新为\theta_1^i时,与梯度大小无关 σ0i=(g0i)2 =g0i其中g0i为梯度,第一次更新参数使θ0i更新为θ1i时,与梯度大小无关
第二步:
当t+1次更新参数时 θ t + 1 i ← θ t i − η σ t i \theta_{t+1}^i \leftarrow \theta_t^i-\frac{\eta}{\sigma_t^i} θt+1iθtiσtiη 其中 σ t i = 1 t + 1 ∑ t i = 0 ( g t i ) 2 \sigma_t^i = \sqrt {\frac{1}{t+1}\sum_t^{i=0}(g_t^i)^2} σti=t+11ti=0(gti)2

由于 θ 1 \theta_1 θ1坡度小->梯度算出来的值也比较小 σ t i \sigma_t^i σti就比较小,学习率就大。反之同理。

RMSProp

RMSProp:对同一个参数的同一个方向的学习率进行动态调整。

θ t + 1 i ← θ t i − η σ t i \theta_{t+1}^i \leftarrow \theta_t^i-\frac{\eta}{\sigma_t^i} θt+1iθtiσtiη σ t i = α ( σ t − 1 i ) 2 + ( 1 − α ) ( g t i ) 2 \sigma_t^i = \sqrt {\alpha(\sigma_{t-1}^i)^2 + (1-\alpha)(g_t^i)^2} σti=α(σt1i)2+(1α)(gti)2
由此,通过 α \alpha α可以决定 g t i g_t^i gti相较于之前存在 σ t − 1 i \sigma_{t-1}^i σt1i当中的 g 1 i , g 2 i , . . . . . , g t − 1 i g_1^i,g_2^i,.....,g_{t-1}^i g1i,g2i,.....,gt1i的重要性。

使用RMSProp可以动态调整 σ t i \sigma_t^i σti这一项。

Adam

Adam:使用动量作为参数的更新方向,并且能够自适应调整学习率。

学习率调度

学习率调度: 使 η \eta η 与时间有关,进行动态调整。

学习率衰减(学习率退火):随着参数的不断更新使 η \eta η越来越小。

预热:让学习率先变大再变小,变到多大,变大的速度,变小的速度是超参数。

为什么需要预热?
因为当使用Adma、RMSProp或AdaGrad时,需要计算 σ \sigma σ ,但最开始的 σ \sigma σ不精准,所有要先收集有关 σ \sigma σ的统计数据,当统计得比较精准之后,再让学习率慢慢爬升。

优化总结

优化后的 公式为:其中 m t i m_t^i mti为动量
θ i + 1 i ← θ t i − η t σ t i m t i \theta_{i+1}^i \leftarrow \theta_t^i - \frac{\eta_t}{\sigma_t^i}m_t^i θi+1iθtiσtiηtmti
步伐大小为 m t i σ t i \frac{m_t^i}{\sigma_t^i} σtimti,通过 η t \eta_t ηt实现学习率调度

分类

分类与回归的关系

回归:输入一个向量x,输出 y ˉ \bar{y} yˉ,使 y ˉ \bar y yˉ 与某个标签y接近。

分类:输入x后,输出仍然是 y ˉ \bar y yˉ ,使 y ˉ \bar y yˉ与正确答案的那个类越接近越好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值