分数 25
全屏浏览题目
切换布局
作者 CHEN, Yue
单位 浙江大学
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.
Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, first print in a line YES
if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or NO
if not. Then if the answer is YES
, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input 1:
7
8 6 5 7 10 8 11
Sample Output 1:
YES
5 7 6 8 11 10 8
Sample Input 2:
7
8 10 11 8 6 7 5
Sample Output 2:
YES
11 8 10 7 5 6 8
Sample Input 3:
7
8 6 8 5 10 9 11
Sample Output 3:
NO
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int n;
int pre[N],in[N],post[N];
int cnt;
bool build(int il,int ir,int pl,int pr,int type){//il表示中序序列左端点,ir右端点,pl先序左端点,pr先序右端点,type为0表示原始序列,为1表示镜像
if(il>ir)return true;//若递归结束则表示重建成功
int root=pre[pl];//获得根结点
int k;//记录在中序序列中根结点的位置
if(!type){//若是原始序列
for(k=il;k<=ir;k++)if(in[k]==root)break;
if(k>ir)return false;
}
else{//若是镜像
for(k=ir;k>=il;k--)if(in[k]==root)break;
if(k<il)return false;
}
bool res=true;
if(!build(il,k-1,pl+1,k-1-il+pl+1,type))res=false;//若左子树不能重建
if(!build(k+1,ir,k-il+pl+1,pr,type))res=false;//右
post[cnt++]=root;//重建是先左子树后右子树,最后根结点,所以倒过来存储即是后序遍历序列
return res;//返回重建的结果
}
int main(){
cin>>n;
for(int i=0;i<n;i++){//输入起始序列和中序序列
cin>>pre[i];
in[i]=pre[i];
}
sort(in,in+n);//得到中序序列
if(build(0,n-1,0,n-1,0)){//若可以创建
puts("YES");
cout<<post[0];
for(int i=1;i<n;i++)cout<<' '<<post[i];
cout<<endl;
}
else{//若不能重新创建
reverse(in,in+n);//反转中序序列得到镜像
cnt=0;
if(build(0,n-1,0,n-1,1)){//若能重新创建
puts("YES");
cout<<post[0];
for(int i=1;i<n;i++)cout<<' '<<post[i];
cout<<endl;
}
else puts("NO");//否则
}
return 0;
}