洛谷 P1029 [NOIP2001 普及组] 最大公约数和最小公倍数问题

前言:

这道题我一开始用了三重循环······
想了半天才发现一个循环就可以了······

题目描述

输入两个正整数 x 0 , y 0 x_0, y_0 x0,y0,求出满足下列条件的 P , Q P, Q P,Q 的个数:

  1. P , Q P,Q P,Q 是正整数。

  2. 要求 P , Q P, Q P,Q x 0 x_0 x0 为最大公约数,以 y 0 y_0 y0 为最小公倍数。

试求:满足条件的所有可能的 P , Q P, Q P,Q 的个数。

输入格式

一行两个正整数 x 0 , y 0 x_0, y_0 x0,y0

输出格式

一行一个数,表示求出满足条件的 P , Q P, Q P,Q 的个数。

样例 #1

样例输入 #1

3 60

样例输出 #1

4

提示

P , Q P,Q P,Q 4 4 4 种:

  1. 3 , 60 3, 60 3,60
  2. 15 , 12 15, 12 15,12
  3. 12 , 15 12, 15 12,15
  4. 60 , 3 60, 3 60,3

对于 100 % 100\% 100% 的数据, 2 ≤ x 0 , y 0 ≤ 10 5 2 \le x_0, y_0 \le {10}^5 2x0,y0105

【题目来源】

NOIP 2001 普及组第二题

分析:

两个正整数的积=他们的最大公约数*他们的最小公倍数,只需枚举p就能求出q。
而p又是x,y的最大公因数,所以只用枚举至sqrt (x * y)。
最后判断p是否满足条件,如果满足,sum+=2。

代码:

#include<bits/stdc++.h>

using namespace std;

int m,n,sum;

int main()
{
	cin>>m>>n;
	
	if(m==n)//特判相等的情况
	{
		sum-=1;
	}
	
	int s=m*n;
	
	for(int i=1;i<=sqrt(s);i++)
	{
		if(s%i==0&&__gcd(i,s/i)==m)
		{
			sum+=2;
		}
	}
	
	cout<<sum;
	
	return 0;
}

结束啦~~~

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

harmis_yz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值