逻辑回归问题整理

本文探讨了逻辑回归在解决二分类问题时如何通过极大似然估计来确定模型参数。通过引入对数几率函数(logistic函数),逻辑回归能够将线性输出映射到0-1区间,模拟后验概率。在训练阶段,利用极大似然估计反推参数,最终通过梯度下降等优化方法求解最小化损失函数,实现模型的最优配置。
摘要由CSDN通过智能技术生成

之前只是简单的接触过逻辑回归,今天针对于最近看论文的疑惑做一个整理;

逻辑回归与极大似然的关系:

逻辑回归的提出主要是在线性问题下为分类问题而提出的;

简单来说,针对于一个二分类问题,我们需要将线性函数映射为一个二元输出,并且要求能够利用常规优化方法,例如梯度下降,来求得最佳的参数值;

因此,正如一些博客所说,简单的使用跃迁函数是不可能的,原因是不可导;

采用对数几率函数来进行表示,即:

这样,可以将连续值映射到一个0,1区间中;

为什么要用该函数映射牵扯到后验概率的问题;

针对于一个模型,训练阶段,必定已知样本特征分布和标签,因此相当于已知分布结果反推参数,也就是所谓极大似然估计;

假设y为正例,1-y为负例,所以有几率:

若采用线性,拟合该几率的对数:

反求则可以得到:

因此可以说有:

实际sigmod函数为后验概率下Y=1情况的预测值;

对于极大似然函数,必须要兼顾两种取值情况,因此改写为一般形式:

由极大似然估计可以得到:

利用堆书简化形式,则有:

对于该式子,我们希望最大化,因此可以加符号和样本平均,得到需要最小化的损失函数:

这里注意一下,这里形式不太同意,但是大多采用In对数函数的形式,方便求导计算;

简单的计算一下求导过程:

也就是常规的损失函数的形式,求梯度求导便可得到:

另一种形式:

主要针对于另一种形式,看论文的时候有些许困惑;

如果样本标签为+1或者-1,则会针对后验概率有以下推导:

相应的,针对于论文里的形式,梯度为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值