逻辑回归的常见问题

逻辑回归概括

逻辑回归假设数据服从伯努利分布,采用极大似然估计的思想,运用梯度下降法来求解参数,达到将数据二分类的目的。

逻辑回归的基本假设

逻辑回归的第一个基本假设是假设数据服从伯努利分布(0-1分布)
逻辑回归的第二个假设是假设样本为正的概率(假设函数) h ( x ) = s i g m o i d ( w T X ) h(x) = sigmoid(w^TX) h(x)=sigmoid(wTX)

逻辑回归的损失函数

我们采用似然函数作为模型更新的loss,最大化似然函数

在这里插入图片描述
这个损失函数很难求导,于是我们将其取log,变成对数似然函数并转化为
在这里插入图片描述

交叉熵损失函数的原理

单个样本的交叉熵损失函数:

L = − [ y log ⁡ y ^ + ( 1 − y ) log ⁡ ( 1 − y ^ ) ] L=-[y \log \hat{y}+(1-y) \log (1-\hat{y})] L=[ylogy^+(1y)log(1y^)]

为什么它能表征真实样本标签和预测概率之间的差值?也就是交叉熵损失函数的数学原理。

因为Sigmoid 函数的输出表征了当前样本标签为 1 的概率,因此也可以表示成: y ^ = P ( y = 1 ∣ x ) \hat{y}=P(y=1|x) y^=P(y=1x)

对应的,当前样本标签为 0 的概率就可以表达成: 1 − y ^ = P ( y = 0 ∣ x ) 1−\hat{y}=P(y=0|x) 1y^=P(y=0x)

把上面两种情况整合到一起:
P ( y ∣ x ) = P ( y = 1 ∣ x ) y ∗ P ( y = 0 ∣ x ) ( 1 − y ) P(y|x)=P(y=1|x)^{y} *P(y=0|x)^{(1−y)} P(yx)=P(y=1x)yP(y=0x)(1y)

即:

P ( y ∣ x ) = y ^ y ⋅ ( 1 − y ^ ) 1 − y P(y | x)=\hat{y}^{y} \cdot(1-\hat{y})^{1-y} P(yx)=y^y(1y^)1y

我们希望的是概率 P(y|x) 越大越好。极大似然估计,是在给定当前样本结果的情况下,反推最有可能导致这样结果的参数值,要求的是似然函数最大,或者说损失函数最小时,对应的参数。

首先,我们对 P(y|x) 引入 log 函数,因为 log 运算并不会影响函数本身的单调性。则有:

log ⁡ P ( y ∣ x ) = log ⁡ ( y ^ y ⋅ ( 1 − y ^ ) 1 − y ) = y log ⁡ y ^ + ( 1 − y ) log ⁡ ( 1 − y ^ ) \log P(y | x)=\log \left(\hat{y}^{y} \cdot(1-\hat{y})^{1-y}\right)=y \log \hat{y}+(1-y) \log (1-\hat{y}) logP(yx)=log(y^y(1y^)1y)=ylogy^

  • 5
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值