大数定律和中心极限定理详解

简介:个人学习分享,如有错误,欢迎批评指正。

一、大数定理

大数定理(Law of Large Numbers, LLN) 是概率论中的基础定理之一,描述了在一定条件下,随着试验次数的增加,样本均值趋近于总体期望值的现象。大数定理在统计学、数理统计、金融、工程等多个领域具有广泛的应用,为统计推断和决策提供了理论基础。

1. 大数定理的基本概述

大数定理主要解决的是以下问题:在重复独立同分布(i.i.d.)的随机试验中,随着试验次数的增加,样本均值是否会趋近于总体的期望值。直观上,这意味着通过大量重复试验,样本的平均结果会越来越接近理论上的平均值。

大数定理有两个主要形式:

  • 弱大数定理(Weak Law of Large Numbers, WLLN)
  • 强大数定理(Strong Law of Large Numbers, SLLN)

这两者在收敛的类型和严格性上有所不同。

2. 大数定理的数学表达

2.1 弱大数定理(WLLN)

弱大数定理指出,对于一组独立同分布的随机变量,其样本均值在概率意义下收敛于总体期望值

数学表述:

X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn 是一组独立同分布的随机变量,具有有限的期望值 E [ X i ] = μ \mathbb{E}[X_i] = \mu E[Xi]=μ。定义样本均值为:

X ‾ n = 1 n ∑ i = 1 n X i \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i Xn=n1i=1nXi

则对于任意的 ϵ > 0 \epsilon > 0 ϵ>0,当 n → ∞ n \rightarrow \infty n 时,有:

lim ⁡ n → ∞ P ( ∣ X ‾ n − μ ∣ ≥ ϵ ) = 0 \lim_{n \to \infty} P \left( |\overline{X}_n - \mu| \geq \epsilon \right) = 0 nlimP(Xnμϵ)=0

即:

X ‾ n → P μ \overline{X}_n \xrightarrow{P} \mu XnP μ

其中,符号 → P \xrightarrow{P} P 表示依概率收敛

2.2 强大数定理(SLLN)

强大数定理进一步强化了弱大数定理的结论,指出样本均值几乎必然(with probability 1)收敛于总体期望值

数学表述:

X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn 是一组独立同分布的随机变量,具有有限的期望值 E [ X i ] = μ \mathbb{E}[X_i] = \mu E[Xi]=μ。定义样本均值为:

X ‾ n = 1 n ∑ i = 1 n X i \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i Xn=n1i=1nXi

则有:

P ( lim ⁡ n → ∞ X ‾ n = μ ) = 1 P \left( \lim_{n \to \infty} \overline{X}_n = \mu \right) = 1 P(nlimXn=μ)=1

即:

X ‾ n → a . s . μ \overline{X}_n \xrightarrow{a.s.} \mu Xna.s. μ

其中,符号 → a . s . \xrightarrow{a.s.} a.s. 表示几乎必然收敛(almost sure convergence)。

3. 大数定理的证明方法

3.1 弱大数定理的证明(使用切比雪夫不等式)

以下是利用切比雪夫不等式证明弱大数定理的步骤:

步骤一:样本均值的期望和方差

由于 X i X_i Xi 独立同分布,且 E [ X i ] = μ \mathbb{E}[X_i] = \mu E[Xi]=μ,方差 Var ( X i ) = σ 2 \text{Var}(X_i) = \sigma^2 Var(Xi)=σ2,则样本均值的期望和方差为:

E [ X ‾ n ] = μ \mathbb{E}[\overline{X}_n] = \mu E[Xn]=μ

Var ( X ‾ n ) = σ 2 n \text{Var}(\overline{X}_n) = \frac{\sigma^2}{n} Var(Xn)=nσ2

步骤二:应用切比雪夫不等式

切比雪夫不等式指出,对于任何随机变量 Y Y Y ϵ > 0 \epsilon > 0 ϵ>0,有:

P ( ∣ Y − E [ Y ] ∣ ≥ ϵ ) ≤ Var ( Y ) ϵ 2 P(|Y - \mathbb{E}[Y]| \geq \epsilon) \leq \frac{\text{Var}(Y)}{\epsilon^2} P(YE[Y]ϵ)ϵ2Var(Y)

Y = X ‾ n Y = \overline{X}_n Y=Xn 代入,得:

P ( ∣ X ‾ n − μ ∣ ≥ ϵ ) ≤ σ 2 n ϵ 2 P \left( |\overline{X}_n - \mu| \geq \epsilon \right) \leq \frac{\sigma^2}{n \epsilon^2} P(Xnμϵ)nϵ2σ2

步骤三:取极限

n → ∞ n \to \infty n 时,右边趋于 0:

lim ⁡ n → ∞ σ 2 n ϵ 2 = 0 \lim_{n \to \infty} \frac{\sigma^2}{n \epsilon^2} = 0 nlimnϵ2σ2=0

因此,根据切比雪夫不等式:

lim ⁡ n → ∞ P ( ∣ X ‾ n − μ ∣ ≥ ϵ ) = 0 \lim_{n \to \infty} P \left( |\overline{X}_n - \mu| \geq \epsilon \right) = 0 nlimP(Xnμϵ)=0

这证明了弱大数定理。

3.2 强大数定理的证明(使用Borel-Cantelli引理)

证明思路

强大数定理的证明比弱大数定理更为复杂,通常需要利用Borel-Cantelli引理。以下是一个基本的证明框架,假设 X i X_i Xi 独立同分布且满足某些条件。

步骤一:定义事件

ϵ > 0 \epsilon > 0 ϵ>0,定义事件:

A n = { ∣ X ‾ n − μ ∣ ≥ ϵ } A_n = \left\{ |\overline{X}_n - \mu| \geq \epsilon \right\} An={ Xnμϵ}

步骤二:应用切比雪夫不等式

同样地,有:

P ( A n ) = P ( ∣ X ‾ n − μ ∣ ≥ ϵ ) ≤ σ 2 n ϵ 2 P(A_n) = P \left( |\overline{X}_n - \mu| \geq \epsilon \right) \leq \frac{\sigma^2}{n \epsilon^2} P(An)=P(Xnμϵ)nϵ2σ2

步骤三:求和

考虑级数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值