摘要:现代游戏开发在传统游戏引擎因预设内容而在创意和成本方面面临重大挑战。近期,视频生成模型取得突破,能够合成逼真且具备交互性的虚拟环境,这为游戏创作带来了一场革命性的机遇。在本立场论文中,我们提出将交互式生成视频(IGV)作为生成式游戏引擎(GGE)的基础,以在下一代游戏中实现无限新颖内容的生成。生成式游戏引擎(GGE)充分利用了交互式生成视频(IGV)在无限高质量内容合成、具备物理感知的世界建模、用户可控的交互性、长期记忆能力以及因果推理等方面的独特优势。我们提出了一个全面的框架,详细阐述了生成式游戏引擎(GGE)的核心模块,并制定了分层次的成熟度路线图(L0-L4)以指导其演进。我们的工作为人工智能时代的游戏开发开辟了一条新路径,展望了一个由人工智能驱动的生成式系统从根本上重塑游戏创作与体验方式的未来。Huggingface链接:Paper page,论文链接:2503.17359
研究背景和目的
研究背景
随着计算机游戏市场的不断增长,游戏开发行业面临着三大关键挑战。首先,传统的游戏引擎高度依赖预先制作的游戏资产和固定的逻辑脚本,导致游戏内容被预先设定,玩家最终会耗尽这些内容,即使在现代开放世界游戏中也是如此。其次,现有的游戏引擎无法提供自适应、个性化的游戏内容,这些内容应根据每个玩家的偏好、习惯和背景进行定制。最后,开发高质量的游戏,尤其是AAA级游戏,需要大量的人力资源和漫长的开发时间。如何在最小化成本的同时,快速创建具有无限个性化内容的高质量游戏,对于整个游戏行业来说仍然是一个根本性的挑战。
近年来,视频生成模型取得了显著进展,它们能够合成大规模的运动动态、语义理解和概念组合,同时保持与物理定律的一致性,并在对象结构和外观方面展现出长期的时间连贯性。这些进展表明,视频生成模型有潜力作为强大的世界模型,用于生成物理上合理的视频。在此基础上,我们提出了交互式生成视频(IGV)的概念,作为一种新的范式,它扩展了视频生成能力,并融入了用户控制、视频上下文记忆、物理规则理解和因果推理智能等关键特性。
研究目的
本研究旨在提出交互式生成视频(IGV)作为生成式游戏引擎(GGE)的核心技术,以解决现代游戏开发面临的上述挑战。通过IGV,我们期望实现无限新颖内容的生成,为下一代游戏提供革命性的创作和体验方式。具体来说,研究目的包括:
- 提出IGV作为GGE的基础:利用IGV的独特优势,如无限高质量内容合成、物理感知世界建模、用户控制交互性、长期记忆能力和因果推理,为游戏开发提供新的解决方案。
- 构建GGE的全面框架:详细阐述GGE的核心模块,包括生成模块、控制模块、记忆模块、动力学模块、智能模块和游戏模块,以及它们之间的相互作用。
- 制定GGE的成熟度路线图:提出一个分层次的成熟度模型(L0-L4),以指导GGE的演进,并评估当前技术的成熟度。
- 探索IGV在游戏开发中的应用潜力:通过实际案例和理论分析,展示IGV如何改变游戏创作和体验的方式,为游戏行业带来深远的影响。
研究方法
理论框架构建
本研究首先构建了生成式游戏引擎(GGE)的全面理论框架。该框架包括五个核心模块:生成模块、控制模块、记忆模块、动力学模块和智能模块。此外,还提出了一个额外的游戏模块,用于在虚拟游戏世界中实施外部规则逻辑。
- 生成模块:负责视频生成的基本功能,包括自回归生成、实时处理和多模态生成。自回归生成支持连续视频合成,实时处理确保低延迟用户交互,多模态生成则补充视频输出以其他模态,如文本和音频。
- 控制模块:管理用户对虚拟世界的控制,包括导航控制和交互控制。导航控制允许玩家通过相机和角色移动探索虚拟世界,交互控制则允许玩家在虚拟环境中操纵对象。
- 记忆模块:解决传统视频生成模型在长时间或大幅度运动场景下难以维持场景布局、对象外观等视觉元素的问题。记忆模块包括静态记忆和动态记忆,分别处理场景级别和对象级别的静态元素以及短期运动和行为模式。
- 动力学模块:专注于物理定律和物理调整两个方面。物理定律关注于理解和生成符合基本物理定律的视频,而物理调整则允许对物理参数进行控制,而不仅仅是复制现实世界的物理现象。
- 智能模块:实现因果推理和自我进化两个关键方面。因果推理能力使模型能够根据初始条件进行长期因果推断,创建深度沉浸式的虚拟世界。自我进化能力则使虚拟世界能够不断发展、演化和生成新知识、规则和行为。
- 游戏模块:在IGV的基础上实施外部游戏规则,如游戏目标、奖励、惩罚和约束,以塑造虚拟世界的游戏体验。
技术实现路径
为了实现上述理论框架,本研究还探讨了各模块的技术实现路径。例如,在生成模块中,我们讨论了自回归生成、实时生成和多模态生成的技术方法和未来方向。在控制模块中,我们探讨了交叉注意力和外部适配器等技术实现控制机制的方法。在记忆模块中,我们讨论了基于注意力的记忆和专用记忆结构等解决方案。在动力学模块中,我们探讨了数据驱动的方法和基于物理的记忆控制等技术实现物理定律和物理调整的方法。在智能模块中,我们讨论了利用大型语言模型或多模态大型语言模型进行因果推理的方法。在游戏模块中,我们探讨了利用大型语言模型或多模态大型语言模型实现游戏规则和动态适应游戏难度的方法。
研究结果
理论框架的提出
本研究成功提出了生成式游戏引擎(GGE)的全面理论框架,详细阐述了其核心模块和相互作用。该框架为游戏开发提供了一种新的解决方案,能够利用交互式生成视频(IGV)的独特优势,实现无限新颖内容的生成。
技术实现路径的探讨
通过深入研究各模块的技术实现路径,本研究为GGE的实际开发提供了可行的技术方案。我们探讨了如何利用现有的视频生成技术、控制技术、记忆技术、物理模拟技术和因果推理技术来实现GGE的核心功能。
成熟度路线图的制定
本研究还制定了一个分层次的成熟度路线图(L0-L4),以指导GGE的演进和评估当前技术的成熟度。这为未来的研究工作提供了清晰的指导方向,有助于推动GGE技术的不断发展。
应用潜力的展示
通过实际案例和理论分析,本研究展示了IGV在游戏开发中的应用潜力。我们探讨了如何利用IGV来创建无限新颖的游戏内容、提供自适应个性化的游戏体验、降低游戏开发成本和提高游戏开发效率等问题。
研究局限
尽管本研究在理论框架构建、技术实现路径探讨、成熟度路线图制定和应用潜力展示等方面取得了显著成果,但仍存在一些局限性。
技术局限性
当前的视频生成技术、控制技术、记忆技术、物理模拟技术和因果推理技术仍存在一定的局限性。例如,视频生成技术可能在处理复杂场景和长时间序列时面临挑战;控制技术可能在实现复杂交互和自适应行为时存在困难;记忆技术可能在维持长期一致性和处理大规模数据时面临问题;物理模拟技术可能在模拟复杂物理现象和交互时存在不足;因果推理技术可能在处理不确定性和复杂因果关系时面临挑战。
数据局限性
高质量的训练数据对于GGE的开发至关重要。然而,当前可用的数据集可能无法满足所有需求。例如,缺乏大规模、多样化的视频数据集来训练视频生成模型;缺乏详细的物理参数标注的数据集来训练物理模拟模型;缺乏反映真实游戏玩家行为和偏好的数据集来训练控制模型和游戏规则模型等。
应用局限性
尽管IGV在游戏开发中具有巨大的潜力,但其实际应用仍受到多种因素的限制。例如,硬件性能可能无法满足实时生成和处理大规模视频数据的需求;玩家可能无法适应全新的游戏交互方式和体验方式;游戏开发者可能需要重新学习新的开发工具和流程等。
未来研究方向
技术改进与创新
针对当前技术的局限性,未来的研究可以致力于改进和创新相关技术。例如,开发更高效、更准确的视频生成算法;研究更智能、更自适应的控制机制;探索更长期、更一致的记忆方法;构建更精确、更高效的物理模拟模型;研究更强大、更灵活的因果推理技术等。
数据集建设
为了满足GGE开发的需求,未来的研究可以致力于构建大规模、多样化的数据集。例如,收集更多高质量的视频数据来训练视频生成模型;标注更多详细的物理参数来训练物理模拟模型;记录更多反映真实游戏玩家行为和偏好的数据来训练控制模型和游戏规则模型等。
应用拓展与优化
为了推动IGV在游戏开发中的实际应用,未来的研究可以致力于拓展和优化其应用场景。例如,研究如何在不同硬件平台上实现实时生成和处理大规模视频数据;探索如何为玩家提供更直观、更自然的游戏交互方式和体验方式;为游戏开发者提供更易用、更高效的开发工具和流程等。
跨学科融合
为了充分利用IGV的潜力,未来的研究还可以致力于跨学科融合。例如,结合计算机视觉、自然语言处理、人工智能和心理学等领域的研究成果,来开发更具创新性和实用性的游戏技术和应用。通过跨学科合作,可以共同解决当前面临的挑战,推动游戏开发技术的不断进步和发展。