LeetCode-70. 爬楼梯 C/C++实现 超详细思路及过程[E]

在这里插入图片描述

题目描述

70. 爬楼梯
难度:简单
相关标签:记忆化搜索、数学、动态规划

提示
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

运行示例
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
方法1:1 阶 + 1 阶
方法2:2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
方法1:1 阶 + 1 阶 + 1 阶
方法2:1 阶 + 2 阶
方法3:2 阶 + 1 阶

提示
1 <= n <= 45

题目分析与实现

这道题可以通过数学计算的方式得到,但博主我数学不及格,就不在这分析什么数学方法了。那还有什么方法可以解决这道题呢?感觉又是一道线性dp问题(线性动态规划问题)。为什么这么说呢?因为当n=3时,此时的爬楼梯的方法数决定于n=2和n=1的方法数。出现后一项依赖于前几项的情况时,这就很可能是一道动态规划问题。

如果是一道动态规划问题,我们就能列出状态转移方程(听起来很高大上,其实跟数学里的递推公式或者找规律时使用的公式很类似)并确定初始状态

首先列出初始状态,这里的初始状态就是n=1和n=2的情况,为什么是这两种情况??因为后续要计算n=3,n=4…时,必须要先知道n=1和n=2的情况。由题目分析可知,n=1时,爬楼梯方法只有1种(跨一个台阶就到楼顶了);n=2时,爬楼梯的方法数有2种,即跨2阶到楼顶或者跨1阶再跨1阶到楼顶。

下面我们就可以开始列状态转移方程了!我们知道,到n的方法有两种情况,一种是从n-1个台阶跨1阶到达的,一种是从n-2个台阶跨2阶到达的。也就是Fn=Fn-1+Fn-2
在这里插入图片描述
下面开始实现我们的代码:
C语言

int climbStairs(int n){
	//当n=1时,如果执行dp[1]=2的语句会报错(数组下标越界)
    if(n == 1)
        return 1;
    int* dp = (int*)malloc(sizeof(int) * n);
    //初始状态
    dp[0] = 1;
    dp[1] = 2;
    for(int i = 2; i < n; i++)
    	//状态转移方程
        dp[i] = dp[i - 1] + dp[i - 2];
    return dp[n - 1];
}

C++

class Solution {
public:
    int climbStairs(int n) {
    	//当n=1时,如果执行dp[1]=2的语句会报错(数组下标越界)
        if(n == 1)
            return 1;
        vector<int>dp(n);
        //初始状态
        dp[0] = 1;
        dp[1] = 2;
        for(int i = 2; i < n; i++)
        	//状态转移方程
            dp[i] = dp[i-1] + dp[i-2];
        return dp[n-1];
    }
};

这个算法时间复杂度为O(n),空间复杂度为O(1)。我们可以使用滚动数组的方式优化空间复杂度,可以参考之间文章746. 使用最小花费爬楼梯

还有个可以实现上述算法的方式递归法。但是这个方法在n过大的时候会超时,我们大概看看递归法的实现就可以了,这里不详细描述。
C语言

int climbStairs(int n){
    if(n == 1)
        return 1;
    else if(n == 2)
        return 2;
    else
        return climbStairs(n - 1) + climbStairs(n - 2);
}

C++

class Solution {
public:
    int climbStairs(int n) {
        if(n == 1)
            return 1;
        else if(n == 2)
            return 2;
        else
            return climbStairs(n - 1) + climbStairs(n - 2);
    }
};

上面就是今天分享的所有内容啦!下一文章见!在这里插入图片描述
🎇有更优秀的算法,欢迎在评论区讨论!!

### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值