KNN底层实现

该博客介绍了如何使用 Python 的 sklearn 库进行数据划分和 K 近邻(KNN)分类。通过加载鸢尾花数据集,将数据分为训练集和测试集,并计算测试样本与训练集中所有样本的距离,找出最近的 k 个邻居,最后根据多数投票原则预测类别。
摘要由CSDN通过智能技术生成
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np

iris = load_iris()
x = iris.data
y = iris.target
#划分数据集为百分之八十的训练集,剩余百分之二十是测试集

x_train , x_test ,y_train , y_test = train_test_split(x, y, test_size=0.2, random_state=666666)
X = x_test[0] #这是我们待会输入进去的数据

distances = []
for x_data in x_train:
    distance = np.sqrt(np.sum(x_data - X)**2) #欧式距离的公式
    distances.append(distance)
np.argsort(distances) #以下所显示的是离我们最近的样本的索引

k = 3
nearest = np.argsort(distances)[:k] #取前k个
top_k_y = [y_train[index] for index in nearest]

d = {}
for cls in top_k_y:
    d[cls] = d.get(cls,0) + 1
d_list = list(d.items())
d_list.sort(key=lambda x:x[1],reverse=True)
print(d_list[0][0]) #这就是最终预测结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值