from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import numpy as np iris = load_iris() x = iris.data y = iris.target #划分数据集为百分之八十的训练集,剩余百分之二十是测试集 x_train , x_test ,y_train , y_test = train_test_split(x, y, test_size=0.2, random_state=666666) X = x_test[0] #这是我们待会输入进去的数据 distances = [] for x_data in x_train: distance = np.sqrt(np.sum(x_data - X)**2) #欧式距离的公式 distances.append(distance) np.argsort(distances) #以下所显示的是离我们最近的样本的索引 k = 3 nearest = np.argsort(distances)[:k] #取前k个 top_k_y = [y_train[index] for index in nearest] d = {} for cls in top_k_y: d[cls] = d.get(cls,0) + 1 d_list = list(d.items()) d_list.sort(key=lambda x:x[1],reverse=True) print(d_list[0][0]) #这就是最终预测结果
KNN底层实现
最新推荐文章于 2024-11-05 15:32:33 发布
该博客介绍了如何使用 Python 的 sklearn 库进行数据划分和 K 近邻(KNN)分类。通过加载鸢尾花数据集,将数据分为训练集和测试集,并计算测试样本与训练集中所有样本的距离,找出最近的 k 个邻居,最后根据多数投票原则预测类别。
摘要由CSDN通过智能技术生成