线性代数基础--矩阵

矩阵是数学中的重要工具,包括元素、维度、行向量、列向量、主对角线等概念。单位矩阵和逆矩阵在矩阵运算中有特殊地位,逆矩阵用于解线性方程组。矩阵可以进行加减、数乘、转置和乘法运算,其中乘法要求特定的尺寸匹配规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵

 矩阵是由排列在矩形阵列中的数字或其他数学对象组成的表格结构。它由行和列组成,并且在数学和应用领域中广泛使用。

基本概念

  1. 元素:矩阵中的每个数字称为元素。元素可以是实数、复数或其他数学对象。

  2. 维度:矩阵的维度表示矩阵的行数和列数。一个 m × n 的矩阵有 m 行和 n 列。

  3. 行向量和列向量:矩阵中的行可以看作是行向量,列可以看作是列向量。

  4. 主对角线:矩阵从左上角到右下角的对角线称为主对角线。主对角线上的元素称为主对角元素。

  5. 零矩阵:所有元素都为零的矩阵称为零矩阵,通常表示为 0。

  6. 单位矩阵:主对角线上的元素全为 1,其余元素全为零的矩阵称为单位矩阵,通常表示为 I。

  7. 矩阵运算:矩阵可以进行加法、减法和乘法运算。加法和减法的操作是逐个对应元素相加或相减。矩阵乘法是一种复合运算,需要满足乘法规则。

  8. 转置:矩阵的转置是将矩阵的行和列互换得到的新矩阵。

  9. 逆矩阵:对于方阵 A,如果存在一个矩阵 B,使得 A × B = B × A = I,那么矩阵 B 称为矩阵 A 的逆矩阵。

矩阵一般使用大写字母表示

如下图所示,矩阵A表示由mxn个数排成 m行n列的数表

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我还可以熬_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值