Celery 是一个基于分布式消息传递的异步任务队列。它专注于实时操作,但也支持调度。Celery 可以与 Django, Flask, Pyramid 等 Web 框架集成,但也可以独立使用。
1.安装 Celery
首先需要安装 Celery 和一个消息代理(如 RabbitMQ 或 Redis)。这里以 Redis 为例:
pip install celery[redis]
2.配置 Celery
创建一个 celery.py
文件来配置 Celery 应用程序:
from celery import Celery
app = Celery('tasks', broker='redis://localhost:6379/0')
@app.task
def add(x, y):
return x + y
broker
参数指定了消息代理的 URL。add
是一个简单的任务函数,它接受两个参数并返回它们的和。
3.启动 Worker
在命令行中启动一个 Celery worker,这将监听任务请求:
celery -A tasks worker --loglevel=info
-A
参数指定了包含 Celery 实例的模块。worker
命令启动了一个工作进程。--loglevel=info
设置了日志级别。
4.调用任务
可以在其他 Python 脚本中调用任务:
from tasks import add
result = add.delay(4, 4)
print(result.get()) # 输出: 8
delay()
方法异步执行任务。get()
方法阻塞等待直到任务完成,并返回结果。
5.任务装饰器选项
可以为任务设置各种选项,例如重试策略、超时等:
@app.task(bind=True, max_retries=3)
def retry_task(self, x, y):
try:
return x / y
except ZeroDivisionError as exc:
raise self.retry(exc=exc, countdown=5) # 5秒后重试
bind=True
让任务函数接收self
参数,即任务本身的实例。max_retries
设置最大重试次数。retry()
方法用于手动重试任务。
6.任务状态
可以跟踪任务的状态和结果:
result = add.delay(10, 20)
print(result.ready()) # 返回任务是否已完成
print(result.successful()) # 返回任务是否成功完成
print(result.result) # 返回任务的结果
7.定期任务
可以通过 Celery Beat 来调度定期任务。首先需要定义定期任务:
from celery.schedules import crontab
app.conf.beat_schedule = {
'add-every-30-seconds': {
'task': 'tasks.add',
'schedule': 30.0,
'args': (16, 16)
},
}
然后启动 Celery Beat 服务:
celery -A tasks beat --loglevel=info
8.高级特性
- 链式任务:可以将多个任务链接起来,前一个任务的输出作为下一个任务的输入。
- 组任务:同时执行多个任务,等待所有任务完成后收集结果。
- 子任务:可以将任务嵌套到其他任务中。
- 路由:可以将不同类型的任务发送到不同的队列。
9.监控和管理
- Flower:是一个实时的 Celery Web 监控工具,可以查看任务状态、工作节点信息等。
- 事件:Celery 支持事件处理,可以自定义事件处理器来响应特定的事件。
以上是使用 Celery 的基本指南。根据实际需求,可能还需要进一步探索 Celery 的高级特性和配置选项。