Pytorch刘二大人 —1、线性模型

本文通过实例详细讲解了使用PyTorch构建线性模型的过程,适合深度学习初学者入门。内容涵盖基本的Python语法和PyTorch库的使用。
摘要由CSDN通过智能技术生成

代码段

 

import numpy as np
import matplotlib.pyplot as plt
 
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
 
//前馈函数(作用:
def forward(x):
    return x*w

//损失函数:计算预测值与真实值之间的差距,平方用于确保差值是正数。
def loss(x, y):
    y_pred = forward(x)    //1.0 *  0.1  =  0.1
    return (y_pred - y)**2  // 0.1 - 2.0 = -(1.9*1.9) = 3.61   
 
 
# 穷举法
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):
    print("w=", w)
    l_sum = 0 //三组数据中lost的和
    for x_val, y_val in zip(x_data, y_data):// for in zip的语法使得可以少写一次for

	#预测值
        y_pred_val = forward(x_val)  //1) 1.0 * 0.1 = 0.1    2.0 * 0.1 = 0.2  .. 0.3

	#当前权重下预测值与实际值之间的差距	
        loss_val = loss(x_val, y_val)
        l_sum += loss_val

     	print('\t', x_val, y_val, y_pred_val, loss_val)
     print('MSE=', l_sum/3)  //MSE (Mean Squared Error)叫做均方误差。

     w_list.append(w)  //权重为0.1,0.2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值