刘二大人PyTorch深度学习(一)--线性模型(Liner Model)

  1. 权重w和b在最开始的时候要先取一个任意值,先算一次,看看预测值y帽和真实值y的差距有多少,这个差距就是损失Lossbe40adccd5d9ff3db0b747c864a41b36.png

其中的1,4,9是一个样本的损失,14/3是平均损失

目的:我们的目的就是通过训练,找到一个合适的权重值,使得平均损失降到最低

注意:只有选择的数据中一点噪声都没有,并且选择的权重还是最真实的分布,损失才=0,一般不会发生

 Mean Square Error:平均平方误差——MSE

81a71c63321af62219b62c6053ccba63.png

可视化绘图工具

4c138f88771221a9b9df029422bfb16d.png

import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]


def forward(x):
    return x * w


def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)


w_list = []
mse_list = []

for w in np.arange(0.0, 4.1, 0.1):
    print("w=", w)
    loss_sum = 0
    for x_val, y_val in zip(x_data, y_data):
        y_pred_val = forward(x_val)
        loss_val = loss(x_val, y_val)
        loss_sum += loss_val
        print("\t", x_val, y_val, y_pred_val, loss_val)
    print('MSE=', loss_sum / 3)
    w_list.append(w)
    mse_list.append(loss_sum / 3)

plt.plot(w_list, mse_list)
plt.xlabel('w')
plt.ylabel('Loss')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值