-
权重w和b在最开始的时候要先取一个任意值,先算一次,看看预测值y帽和真实值y的差距有多少,这个差距就是损失Loss
其中的1,4,9是一个样本的损失,14/3是平均损失
目的:我们的目的就是通过训练,找到一个合适的权重值,使得平均损失降到最低
注意:只有选择的数据中一点噪声都没有,并且选择的权重还是最真实的分布,损失才=0,一般不会发生
Mean Square Error:平均平方误差——MSE
可视化绘图工具
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
def forward(x):
return x * w
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) * (y_pred - y)
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):
print("w=", w)
loss_sum = 0
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
loss_sum += loss_val
print("\t", x_val, y_val, y_pred_val, loss_val)
print('MSE=', loss_sum / 3)
w_list.append(w)
mse_list.append(loss_sum / 3)
plt.plot(w_list, mse_list)
plt.xlabel('w')
plt.ylabel('Loss')
plt.show()