享受这时光
码龄7年
关注
提问 私信
  • 博客:19,010
    19,010
    总访问量
  • 26
    原创
  • 1,838,801
    排名
  • 55
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-08-10
博客简介:

qq_39804263的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    357
    当月
    0
个人成就
  • 获得55次点赞
  • 内容获得3次评论
  • 获得181次收藏
  • 代码片获得593次分享
创作历程
  • 1篇
    2024年
  • 2篇
    2023年
  • 2篇
    2022年
  • 21篇
    2021年
成就勋章
TA的专栏
  • 版面分析
    3篇
  • labelme2coco
    1篇
  • Transformer
    1篇
  • 百度飞浆图像分割课程 笔记
    18篇
  • 语义分割
  • 文档图像分割
    2篇
  • OCR
    2篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

刘二大人《PyTorch深度学习实践》笔记 + 作业

课程链接1. Overview人类智能(Human Intelligence)推理 infer预测(prediction):实体——抽象概念而 machine learning 就是把推理的大脑变成算法How to develop learing system?基于规则的算法(人工智能程序):依赖于规则,需要非常专业的背景知识来制定规则,构建知识库。如果是很复杂的目标,是很难把规则做通的,肯定会漏一些,导致算法有缺陷。规则只会越来越多,越来越庞大,直到人类无法维护。注意,基于规则的并不是
原创
发布博客 2024.06.14 ·
1757 阅读 ·
26 点赞 ·
1 评论 ·
82 收藏

刘二大人《PyTorch深度学习实践》作业

【代码】刘二大人《PyTorch深度学习实践》作业
原创
发布博客 2023.12.06 ·
760 阅读 ·
10 点赞 ·
0 评论 ·
20 收藏

paddleocr gpu环境配置

paddle ocr gpu配置
原创
发布博客 2023.10.09 ·
467 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

海康威视 VSR 环境配置

conda create -n vsr python==3.7conda activate vsrconda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.1 -c pytorchpip install mmcv-full==1.3.4 -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.htmlpip instal
原创
发布博客 2022.05.19 ·
328 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

制作coco数据集,并在mmdetection上实验

一、dataset2coco首先将标注好的json和img放在同一个文件夹中,取名为images。format.py统一修改json中的img_path。将路径修改为统一格式。×××.jpgformat.py 代码如下:import osimport redir_path = '/home/chenghiuyi/03 DLA-CHD/DLA-CHD_TRAIN_NO_CHECK/逻辑分类/01 data/images/'pattern = re.compile('"imagePath"
原创
发布博客 2022.04.07 ·
1081 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

Attention Is All You Need

论文链接:https://arxiv.org/pdf/1706.03762.pdf李沫老师讲解这篇文章非常的详细,视频链接:https://www.bilibili.com/video/BV1pu411o7BE?from=search&seid=4820643104805224410&spm_id_from=333.337.0.01、IntroductRNN的特点,同时也是缺点给一个序列,RNN的计算是从左往右一步一步往前做。假设序列是句子,就是一个词一个词往前看,对第t个词会.
原创
发布博客 2021.11.03 ·
488 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

百度飞浆图像分割课程 笔记14:全景分割 Panoptic-DeepLab [CVPR 2019]

bottom-up:不需要先做检测Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation论文链接:https://arxiv.org/pdf/1911.10194.pdfPanoptic-DeepLab框架采用双ASPP双解码器结构预测三个输出,语义分割,实例中心和实例回归Framework:Encoder:ImageNet-Pretrained CNN(wi
原创
发布博客 2021.10.29 ·
829 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

百度飞浆图像分割课程 笔记13:全景分割 UPSNet [CVPR 2019]

UPSNet:A Unified Panoptic Segmentation Network论文链接: https://arxiv.org/pdf/1901.03784.pdf代码链接: https://github.com/uber-research/UPSNet设计一个基于可变形卷积的语义分割头和一个Mask R-CNN 的实例分割头,同时解决这两个子任务引入无参数全景头,通过像素级追踪解决全景分割Backbone采用原始的 Mask R-CNN 主干作为卷积特征提取网络。 该主干利用
原创
发布博客 2021.10.29 ·
422 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

百度飞浆图像分割课程 笔记12:实例分割 SOLO [ECCV 2020]

SOLO:Segmentation Objects by LocationsSOLO框架
原创
发布博客 2021.10.28 ·
371 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

百度飞浆图像分割课程 笔记11:实例分割 Mask R-CNN [ICCV 2017]

Mask R-CNN框架目的:检测图像中的对象object(bounding box),同时为每个实例生成高质量的分割mask(框中哪个像素属于物体,哪个像素属于背景)第一阶段(RPN):通过RPN网络提取候选框(哪些区域可能是物体)第二阶段:对于选取出来的候选框,通过RoIAlign或者RoIPooling操作得到固定大小的feature map(包括当前物体的一些信息),通过feature map来预测类别或者bounding box以及mask(mask只对正样本做)Mask R-CNN
原创
发布博客 2021.10.27 ·
1576 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

百度飞浆图像分割课程 笔记10:实例与全景分割的基本概念

语义分割:每个像素所属类别stuff:没有实际的边界,天空,地面 。(不能说多少个天空,地面)object:车、人等。(能用一个一个的数量来衡量)实例分割:每个object的类别以及每个mask(只有object类)做检测只要bounding boxes框,而做实例分割,需要mask,也就是在框中,要知道是属于object类还是背景。全景分割:(语义分割和实例分割结合)对于stuff,要知道类别(是天空还是草地)对于object,要知道类别和第几个实例...
原创
发布博客 2021.10.27 ·
166 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

百度飞浆图像分割课程 笔记09:基于语义特征的图推理方法 GINet(Graph Interaction Network for Scene Parsing)

基于语义特征的图推理方法 GINet(Graph Interaction Network for Scene Parsing)研究动机Beyond Grids以及GloRe都是基于视觉图表征来推理上下文GINet考虑用语义知识来增强视觉推理具体方法图构建视觉图的构建:Z为投影矩阵(1×1卷积生成),W为维度变换矩阵(把维度变成D维),N就是node的数量,D就是每个node的维度。语义图的构建:通过group得到类别的embedding,通过MLP做一个维度变换(主要是考虑和视觉图做
原创
发布博客 2021.10.27 ·
1835 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

百度飞浆图像分割课程 笔记08:基于视觉特征的图推理方法 GloRe(Graph-Based Global Reasoning Networks)

Graph-Based Global Reasoning Networks注意:Node不是类别数,只是将相似的像素聚合在一起,可以设置为16或者32,为经验值。图神经网络不是用来做分类的(不是作为classifier),只是将feature map进行分组,分成几个node,然后学习了node之间的关系,最后再返回为feature map(可以理解为学习了node的上下文信息的feature map),图神经网络可以放在model中的任何位置,即插即用(如果用在网络的前端,则node数量要大一点
原创
发布博客 2021.10.26 ·
590 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

百度飞浆图像分割课程 笔记07:基于视觉特征的图推理方法 Beyond Grids(Learning Graph Representations for Visual Recognition)

Beyond Grids:Learning Graph Representations for Visual Recognition具体方法图投影(Graph Projection)本质:把一些特征相似的pixel分配到同一个节点,也就是特征点聚合。如何特征点聚合分配特征X={x1;x2;x3;...;xNx_{1};x_{2};x_{3};...;x_{N}x1​;x2​;x3​;...;xN​}∈RN×dR^{N×d}RN×d到节点集合。其中N=H×W。步骤1:首先计算一个分配矩阵,作
原创
发布博客 2021.10.26 ·
776 阅读 ·
4 点赞 ·
1 评论 ·
8 收藏

百度飞浆图像分割课程 笔记06:语义分割中基于图的上下文建模方法 前置知识

Section1(Theory)1. 图卷积网络的基本概念图神经网络怎么做卷积例如红色节点(Node),会把红色Node的5个邻居节点上的信息做聚合,或者说,把5个节点的消息传递、汇集在红色Node上。假设有N个节点,形式化表示为:Z=D−12(A+I)D−12XWZ = D^{-\frac{1}{2}}(A + I)D^{-\frac{1}{2}}XWZ=D−21​(A+I)D−21​XW其中矩阵X:Node的表征,每个Node假设为C维的特征向量,把N个节点拼接成X矩阵(N×C维)矩
原创
发布博客 2021.10.26 ·
203 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

百度飞浆图像分割课程 作业3:pspnet.py、infer.py、resnet_dilated.py、UNet.py

pspnet.py根据课程和相关材料对pspnet的讲解,实现用Paddle动态图搭建pspnetPSPNet需要调用的backbone会提供给同学:resnet_dilated.py中实现了具有dilation的resnet。建议同学使用ResNet50或者ResNet101为backbone网络。import numpy as npimport paddleimport paddle.fluid as fluidfrom paddle.fluid.dygraph import t..
原创
发布博客 2021.10.26 ·
453 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

百度飞浆图像分割课程 笔记05:DeepLab系列网络 v1-v3 以及代码实现

DeepLab系列网络对应的文章paper链接v1: https://arxiv.org/abs/1412.7062v2: https://ieeexplore.ieee.org/abstract/document/7913730/v3:https://arxiv.org/abs/1706.05587v3+:https://openaccess.thecvf.com/content_ECCV_2018/html/Liang-Chieh_Chen_Encoder-Decoder_with_Atro
原创
发布博客 2021.10.25 ·
740 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

百度飞浆图像分割课程 笔记04:PSPNet 以及代码实现

PSP分割网络:Pyramid Scene Parsing NetworkScene ~= Semantic SegmentationⅠ. FCN的缺点:分割结果不够精细没有考虑上下文信息(左顾右盼)Ⅱ. PSP网络 —— Context Information1. 缺少上下文信息表现:图中的boat区域和类别"car"的appearance相似模型只有local信息,boat容易被识别成"car"confusion categories:building and skyscrap
原创
发布博客 2021.10.24 ·
932 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

百度飞浆图像分割课程 笔记03:U-Net 以及代码实现

U-Net框架U-Net和FCN的区别:FCN特征融合方式为相加U-Net特征融合方式为concat具体操作为:crop + concat
原创
发布博客 2021.10.23 ·
473 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

百度飞浆图像分割课程 作业2:basic_seg_loss.py、basic_dataloader.py、basic_transform.py、basic_train.py、train.py

1. basic_seg_loss.pyimport paddleimport paddle.fluid as fluidimport numpy as npimport cv2import matplotlib.pyplot as plteps = 1e-8def Basic_SegLoss(preds, labels, ignore_index=255): n, c, h, w = preds.shape # TODO: transpose preds to NxH
原创
发布博客 2021.10.22 ·
339 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏
加载更多