python pandas 把数据保存成csv文件,以及读取csv文件获取指定行、指定列数据

本文介绍了如何使用Python的pandas库将数据集保存为CSV文件,并演示了读取CSV文件以获取特定行和列的方法。内容包括数据说明、数据保存成CSV的步骤以及读取CSV文件的示例代码。
摘要由CSDN通过智能技术生成

文章目录:

1 数据说明

1、在test_data目录下是我们的数据集(我虚构的,只是为了说明下面的处理过程)

图片来源这里,不要问,没有联系方式!
在这里插入图片描述

  • 每张图片名中的数字是样本数据的标签label
  • 这里我们的数据规模大小是5张数据

2、数据保存成csv文件要求

  • 每一行代表一个样本
  • 每一行的第一列表示文件的路径,每一行的第二列表示样本的标签

2 把数据集文件信息使用python pandas保存成csv文件

1、根据上面保存成csv文件的要求,把数据集相关信息保存到csv文件中:

# coding=utf-8
"""
Copyright (c) 2018-2022. All Rights Reserved.

@author: shliang
@email: shliang0603@gmail.com

创建和导入csv文件
"""


import pandas as pd
import glob
import os
import numpy as np

# 创建csv文件
def create_csv_file():
    '''
    把test_data目录下的文件绝对路径保存到csv文件中,同时把文件名中的label也保存下来
    保存两列  filename, label
    :return:
    '''
    img_paths_list = glob.glob("../test_data/*.png")
    labes_list = []
    img_label_list = []
    for path in img_paths_list:
        img_name = os.path.split(path)[-1]
        prefix = os.path.splitext(img_name)[0]
        label = prefix.split('_')[-1]
        labes_list.append(str(label))
        # abspath = os.path.abspath(path)
        img_label_list.append([path, label])


    # 通过zip函数组合每一个样本的path和label: (path, label)
    print(img_paths_list)
    print(labes_list)
    img_label_list2 = list(zip(img_paths_list, labes_list))
    print(img_label_list)
    print(img_label_list2)

    # 保存数据data格式,嵌套列表,每个子列表中表示每一行数据
    # df = pd.DataFrame(data=np.array([[img0, label0],[img1, label1],...,[img4, label4]]),
    #                   columns=['filepath', 'label'])
    df1 = pd.DataFr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值