我的Go+语言初体验——Go+语言构建神经网络实战手写数字识别
0. 前言
之前发blink说自己想学一门新语言,很多热心的小伙伴推荐了 Go
,这时又恰逢看到官方创作活动“我的Go+语言初体验”征文大赛,看了官方文档,发现 Go+
完全兼容 Go
语言,并且代码更加易读。这不就是说,这波实际学习了一门语言却掌握了两门语言,表示赚到了。
于是迫不及待的开始准备体验下,既然官方介绍说 Go+
「for engineering, STEM education, and data science」
,融合了数据科学领域的 Python
,那作为人工智能领域的相关从业人员,探索 Go+
在人工智能领域的应用,我辈当然又是义不容辞了。
本文,首先简要概述下神经网络的相关概念,然后使用 Go+
语言构建神经网络实战手写数字识别。
1. 神经网络相关概念
人工神经网络的发展受到了人脑神经元的启发,并且在多个领域中都已经取得了广泛的应用,包括图像识别、语音识别以及推荐系统等等,本文并非人工智能的详尽教程,但会简要介绍相关基础,为使用 Go+
语言构建神经网络奠定基础。
在人工神经网络中,使用神经元接受输入数据,对数据执行操作后传递到下一神经元,每个神经元的输出称为激活,获取激活的函数称为激活函数,神经元中的参数称为权重或偏置。每个网络层中包含若干个神经元,其中接收初始输入的网络层称为输入层,产生最终结果的网络层称为输出层,位于输出层与隐藏层之间的网络层称为隐藏层。数据从输入到输出的整个传输过程称为正向传播;而反向传播是一种训练神经网络的方法,通过计算真实值与网络输出值间的误差,反向修改网络的权重。
在如下图所示的全连接网络中,每个节点表示一个神经元,整个网络包括一层输入层、一层输出层已经两层隐藏层。
虽然已经有一些现有的神经网络框架可以使用,但作为体验作,本文将从头开始构建简单的全连接网络,以更好了解神经网络的基本组成以及运行原理。
本文使用 MNIST
数据集和 gonum
构建简单的全连接网络,虽然全连接网络