矩阵论——再探Jordan分解

警告:本文仅作为笔者对整个 J o r d a n Jordan Jordan分解脉络的思考和理解,所用公式定理可能表述不严谨,且也不对其进行严格的数学证明。故本文仅适合学完 J o r d a n Jordan Jordan分解后一头雾水的读者,对完全没学过 J o r d a n Jordan Jordan分解的人并不友好!


S c h u r Schur Schur定理知,任一复方阵相似于上三角矩阵。如果是更特殊的单纯矩阵,我们可以将其“相似到”对角矩阵。一个很自然的问题是,对于其他一般的矩阵而言,其能“相似到”的介于一般的上三角矩阵和特殊的对角矩阵之间的最简形式是什么样子?

这个问题似乎不难回答, S c h u r Schur Schur分解已经帮助我们找到任一复方阵能“相似到”的上三角形式,离最终的最简形式好像只有一步之遥了。实则不然,这一小步很难直接迈过去。在 n n n阶单纯矩阵相似对角化的过程中,我们是将它的 n n n个线性无关的特征向量组装成可逆矩阵 P P P,使得 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ,从而完成对角化。但是非单纯矩阵一定找不到 n n n个线性无关的特征向量,那也就注定无法直接构造相应的矩阵 P P P

为此,引入 λ \lambda λ矩阵的概念和理论帮助我们绕路而行,曲线救国。

定理1 两个 λ \lambda λ矩阵相抵 ⇔ \Leftrightarrow 相同的各阶行列式因子 ⇔ \Leftrightarrow 相同的不变因子(相同的 S m i t h Smith Smith标准形) ⇔ \Leftrightarrow 相等的秩和相同的初等因子

定理 1 1 1涉及到的理论一般矩阵论的教科书都会介绍到,本文不详细展开,懂的都懂。下面的定理 2 2 2则是联系数字矩阵与 λ \lambda λ矩阵的关键定理:

定理2 复方阵 A A A B B B相似当且仅当它们的特征矩阵 λ I − A \lambda I-A λIA λ I − B \lambda I-B λIB相抵

因为有了定理 1 1 1和定理 2 2 2,当给出一个数字矩阵 A A A,我们希望找到一个与之相似而又形式较为简单(介于一般的上三角矩阵和特殊的对角矩阵之间)的数字矩阵 B B B时,我们并不一定要在数字矩阵的苦海内挣扎,而是可以通过找到与 λ I − A \lambda I-A λIA相抵的另一个 λ \lambda λ矩阵,那么这个 λ \lambda λ矩阵所对应的数字矩阵和原来的 A A A一定是相似的。在此基础上,如果我们还能够精心设计这个 λ \lambda λ矩阵使得这个 λ \lambda λ矩阵所对应的数字矩阵恰是我们想要的介于一般的上三角矩阵和特殊的对角矩阵之间的最简形式,那就完成了我们的目标!

所以如果把定理 1 1 1和定理 2 2 2连起来写就是这样的:

复方阵 A A A B B B相似 ⇔ \Leftrightarrow λ I − A \lambda I-A λIA λ I − B \lambda I-B λIB相抵 ⇔ \Leftrightarrow λ I − A \lambda I-A λIA λ I − B \lambda I-B λIB具有相同的各阶行列式因子 ⇔ \Leftrightarrow λ I − A \lambda I-A λIA λ I − B \lambda I-B λIB具有相同的不变因子(相同的 S m i t h Smith Smith标准形) ⇔ \Leftrightarrow λ I − A \lambda I-A λIA λ I − B \lambda I-B λIB具有相等的秩和相同的初等因子

实际上对于两个 n n n阶复方阵 A A A B B B(应该没有人会去判定不同阶的矩阵是否相似的吧)而言,它们的特征矩阵 λ I − A \lambda I-A λIA λ I − B \lambda I-B λIB一定都是满秩的,故秩自然相等皆为 n n n,所以上面一系列的等价条件最后一个可以把“具有相等的秩”这一条删去,即:

复方阵 A A A B B B相似 ⇔ \Leftrightarrow λ I − A \lambda I-A λIA λ I − B \lambda I-B λIB相抵 ⇔ \Leftrightarrow ⇔ \Leftrightarrow λ I − A \lambda I-A λIA λ I − B \lambda I-B λIB具有相同的初等因子

现在,我们的任务变成了要去构造一个与 λ I − A \lambda I-A λIA相抵的 λ \lambda λ矩阵,且它的形式也必须要比较简单(否则它对应的数字矩阵形式不会简单)。又一个很自然的问题是 λ \lambda λ矩阵相抵的充要条件有很多(行列式因子/不变因子/初等因子),我们到底选择哪一个去构造?下面的定理 3 3 3或许能给我们一些提示:

定理3 λ \lambda λ矩阵 D ( λ ) D(\lambda) D(λ)为对角块矩阵,即 D ( λ ) = d i a g ( D 1 ( λ ) , ⋯   , D s ( λ ) ) D(\lambda)=diag(D_1(\lambda),\cdots,D_s(\lambda)) D(λ)=diag(D1(λ),,Ds(λ)) D 1 ( λ ) , ⋯   , D s ( λ ) D_1(\lambda),\cdots,D_s(\lambda) D1(λ),,Ds(λ)初等因子的全体就是 D ( λ ) D(\lambda) D(λ)的全部初等因子,其中 D i ( λ ) ( i = 1 , ⋯   , s ) D_i(\lambda)(i=1,\cdots,s) Di(λ)(i=1,,s)是适当阶数的 λ \lambda λ矩阵

这意味着如果对于特征矩阵 λ I − A \lambda I-A λIA的每个初等因子,我们都去构造一个含有与之相同且唯一的初等因子的 λ \lambda λ矩阵 D i ( λ ) D_i(\lambda) Di(λ),再把这一系列 D i ( λ ) D_i(\lambda) Di(λ)组成大的对角块矩阵 D ( λ ) D(\lambda) D(λ),那么此时的 D ( λ ) D(\lambda) D(λ)不就和 λ I − A \lambda I-A λIA具有完全一致的初等因子了吗,若再将 D ( λ ) D(\lambda) D(λ)视作数字矩阵 D D D的特征矩阵 λ I − D \lambda I-D λID,那么 D D D A A A就是相似的。

再一个很自然的问题,如何去精心设计上面提到的一系列 D i ( λ ) D_i(\lambda) Di(λ)呢?也就是说,对于 λ I − A \lambda I-A λIA的第 i i i个形如 ( λ − λ i ) n i (\lambda-\lambda_i)^{n_i} (λλi)ni的初等因子,如何构造相应的 D i ( λ ) D_i(\lambda) Di(λ)使得它的初等因子有且仅有一个,恰为 ( λ − λ i ) n i (\lambda-\lambda_i)^{n_i} (λλi)ni。这里我们需要调用自己惊人的注意力,发现这样一个 λ \lambda λ矩阵
[ λ − λ i − 1 λ − λ i − 1 ⋱ ⋱ λ − λ i − 1 λ − λ i ] n i × n i (1) \left[ \begin{matrix} \lambda-\lambda_i & -1 \\ & \lambda-\lambda_i & -1\\ & & \ddots & \ddots\\ & & & \lambda-\lambda_i & -1\\ & & & & \lambda-\lambda_i \\ \end{matrix} \right]_{n_i \times n_i} \tag{1} λλi1λλi1λλi1λλi ni×ni(1)求矩阵 ( 1 ) (1) (1)的初等因子 ⇒ \Rightarrow 求不变因子 ⇒ \Rightarrow 求各阶行列式因子,矩阵 ( 1 ) (1) (1)的各阶行列式因子我们不从 1 1 1阶慢慢开始往高阶看,我们从高阶往低阶看,矩阵 ( 1 ) (1) (1) n i n_i ni阶行列式因子即为其本身的行列式 ( λ − λ i ) n i (\lambda-\lambda_i)^{n_i} (λλi)ni,再到它的 n i − 1 n_i-1 ni1阶行列式因子,我们只需要观察矩阵 ( 1 ) (1) (1)删去第一列和最后一行元素后留下来的右上角的 n i − 1 n_i-1 ni1阶子块 ( 2 ) (2) (2)即可
[ − 1 λ − λ i − 1 ⋱ ⋱ λ − λ i − 1 ] ( n i − 1 ) × ( n i − 1 ) (2) \left[ \begin{matrix} & -1 \\ & \lambda-\lambda_i & -1\\ & & \ddots & \ddots\\ & & & \lambda-\lambda_i & -1\\ \end{matrix} \right]_{(n_i-1)\times (n_i-1)} \tag{2} 1λλi1λλi1 (ni1)×(ni1)(2)我们发现矩阵 ( 2 ) (2) (2)的行列式要么 + 1 +1 +1要么 − 1 -1 1,这意味着矩阵 ( 1 ) (1) (1)的全部 n i − 1 n_i-1 ni1阶子式的首 1 1 1最大公因式只能是 1 1 1,即矩阵 ( 1 ) (1) (1) n i − 1 n_i-1 ni1阶行列式因子必为 1 1 1。同理,我们再把 ( 2 ) (2) (2)的第一行和第一列元素删去,又得到矩阵 ( 1 ) (1) (1) n i − 2 n_i-2 ni2阶子块,这个子块行列式同样要么 + 1 +1 +1要么 − 1 -1 1,又说明矩阵 ( 1 ) (1) (1) n i − 2 n_i-2 ni2阶行列式因子也必为 1 1 1……一直进行下去,我们得出结论:矩阵 ( 1 ) (1) (1)的前 n i − 1 n_i-1 ni1阶行列式因子均为 1 1 1 n i n_i ni阶行列式因子为 ( λ − λ i ) n i (\lambda-\lambda_i)^{n_i} (λλi)ni ⇒ \Rightarrow 矩阵 ( 1 ) (1) (1)的前 n i − 1 n_i-1 ni1个不变因子均为 1 1 1,第 n i n_i ni个不变因子为 ( λ − λ i ) n i (\lambda-\lambda_i)^{n_i} (λλi)ni ⇒ \Rightarrow 矩阵 ( 1 ) (1) (1)有且仅有一个初等因子 ( λ − λ i ) n i (\lambda-\lambda_i)^{n_i} (λλi)ni

至此,我们终于说明了构造的矩阵 ( 1 ) (1) (1)就是符合要求的 D i ( λ ) D_i(\lambda) Di(λ),由于

【先求出所需要的一系列 D i ( λ ) D_i(\lambda) Di(λ)后组装为对角阵 D ( λ ) D(\lambda) D(λ)再去求对应的数字矩阵 D D D
【先把每一个 D i ( λ ) D_i(\lambda) Di(λ)求出对应的数字矩阵 D i D_i Di再将 D i D_i Di组装为对角阵 D D D

这两种顺序得到的结果是一样的,我们可以先把矩阵 ( 1 ) (1) (1)求出它对应的数字矩阵 ( 3 ) (3) (3)
[ λ i 1 λ i 1 ⋱ ⋱ λ i 1 λ i ] n i × n i (3) \left[ \begin{matrix} \lambda_i & 1 \\ & \lambda_i & 1\\ & & \ddots & \ddots\\ & & & \lambda_i & 1\\ & & & & \lambda_i \\ \end{matrix} \right]_{n_i \times n_i} \tag{3} λi1λi1λi1λi ni×ni(3)那么恭喜你,成功解锁 J o r d a n Jordan Jordan块!针对 λ I − A \lambda I-A λIA的每个初等因子,我们都构造出了一个相应的 J o r d a n Jordan Jordan块,再把这些 J o r d a n Jordan Jordan块组装为对角块矩阵,就得到了矩阵 A A A J o r d a n Jordan Jordan标准形! J o r d a n Jordan Jordan标准形非零元素只会出现在主对角线和其上方的次对角线中,其他位置一定都是 0 0 0

重新审视上述从矩阵 ( 1 ) (1) (1)到矩阵 ( 2 ) (2) (2)再到矩阵 ( 3 ) (3) (3)的分析过程,我们不难发现当 J o r d a n Jordan Jordan块(即矩阵 ( 3 ) (3) (3))发生如下 3 3 3种变化时都不影响它所对应的那个特征矩阵有且仅有一个初等因子 ( λ − λ i ) n i (\lambda-\lambda_i)^{n_i} (λλi)ni
①次对角线元素不是全 1 1 1而是全 2 2 2
②次对角线元素是彼此不相同的非零数;
③主对角线下方的次对角线全 1 1 1,上方的次对角线全0(其实就是做个转置).
也就是说这三种变化后的矩阵我们都可以认为是广义上的 J o r d a n Jordan Jordan块。

最后一个很自然的问题 J o r d a n Jordan Jordan块(即矩阵 ( 3 ) (3) (3))次对角线上的非零元素能不能丢掉其中若干个使其为 0 0 0?其实这个问题相当于在问我们构造出的 J o r d a n Jordan Jordan标准形到底是不是我们一开始提出的介于一般的上三角矩阵和特殊的对角矩阵之间的最简形式——其实确实是的。我们可以举个例子,不做严格证明,因为我不会。
[ 1 1 1 1 1 ] (4) \left[ \begin{matrix} 1 & 1 \\ & 1 & 1\\ & & 1\\ \end{matrix} \right] \tag{4} 11111 (4)显然矩阵 ( 4 ) (4) (4)是一个 J o r d a n Jordan Jordan块,当我们把次对角线上的两个 1 1 1的一个或者两个变成 0 0 0时,再去计算它的初等因子你会发现和原来不一样了,也就是说这个 J o r d a n Jordan Jordan块已经不能再简化了。

最后,当给定数字矩阵 A A A时,我们可以先找到它的 J o r d a n Jordan Jordan标准形 J J J,再去寻找某个可逆矩阵 P P P使得 P − 1 A P = J P^{-1}AP=J P1AP=J,改写一下就是
A = P J P − 1 (5) A=PJP^{-1}\tag{5} A=PJP1(5)此即 J o r d a n Jordan Jordan分解。

讲到这里我还想补充一点,前面我们提到 J o r d a n Jordan Jordan块进行第③种变化(做转置)时其特征矩阵的初等因子并没有发生改变,仍然可以视为我们所需要的那个 J o r d a n Jordan Jordan块。如果所有的 J o r d a n Jordan Jordan块都进行转置,其实相当于把 A A A J o r d a n Jordan Jordan标准形 J J J进行转置得到 J T J^{T} JT,它们的特征矩阵 λ I − J \lambda I-J λIJ λ I − J T \lambda I-J^{T} λIJT具有完全一致的初等因子 ⇒ \Rightarrow λ I − J \lambda I-J λIJ λ I − J T \lambda I-J^{T} λIJT相抵 ⇒ \Rightarrow 对应的数字矩阵 J J J J T J^{T} JT相似。根据矩阵相似的传递性,我们有
A ∼ J ∼ J T (6) A\sim J\sim J^{T}\tag{6} AJJT(6)同时,我们对式 ( 5 ) (5) (5)两边同取转置得
A T = ( P T ) − 1 J T P T (7) A^{T}=(P^{T})^{-1}J^{T}P^{T}\tag{7} AT=(PT)1JTPT(7)则有
A T ∼ J T (8) A^{T}\sim J^{T}\tag{8} ATJT(8)结合式 ( 6 ) (6) (6)和式 ( 8 ) (8) (8)我们得到
A ∼ J ∼ J T ∼ A T (9) A\sim J\sim J^{T}\sim A^{T}\tag{9} AJJTAT(9)没错,我最后想补充的一点就是 A A A相似于 A T A^{T} AT,它们具有相同的 J o r d a n Jordan Jordan标准形!


甲辰年 十月廿四

<think>嗯,用户问的是关于实Schur分解定理的理论、数学推导、应用以及算法实现。首先,我需要回忆一下Schur分解的基本概念。根据之前提供的引用,Schur分解是将方阵分解为上三角矩阵和酉矩阵的乘积。但用户特别提到“实Schur分解”,这说明他可能关注的是实数矩阵的情况,而不是复数域上的分解。实Schur分解应该会涉及实矩阵分解为实正交矩阵和拟上三角矩阵,也就是分块上三角矩阵,每个块要么是1x1,要么是2x2的,对应实特征值或共轭复特征值对。 首先,我需要明确实Schur分解定理的具体内容。定理应该指出,对于任意实方阵A,存在正交矩阵Q,使得Q^T A Q是拟上三角矩阵,也就是实Schur形式。这个分解在数值计算中很重要,特别是处理实数矩阵时,避免复数运算,提高计算效率。 接下来是数学推导部分。可能需要从一般的Schur分解出发,讨论实数情况下的调整。例如,当矩阵有复特征值时,实分解如何处理?这时候可能需要保持矩阵的实性,通过引入二阶块来对应共轭特征值对。这部分需要详细解释,可能涉及到正交相似变换,比如使用Givens旋转或Householder反射来逐步将矩阵化为拟上三角形式。 然后是应用方面。实Schur分解在哪些实际问题中使用?比如在控制理论中的稳定性分析,求解Riccati方程,或者计算矩阵函数如指数函数等。另外,特征值的计算是其主要应用之一,因为通过分解后,特征值可以直接从对角线块中得到,无论是实数还是复数的情况。 关于算法实现,用户可能需要知道具体的数值方法,比如QR算法在实Schur分解中的应用。QR算法通过迭代将矩阵转化为Schur形式,但针对实矩阵,可能需要双重步QR算法来处理复共轭特征值,避免引入复数运算。此外,Francis的隐式QR步可能是实现的关键步骤,这需要详细说明算法的流程和步骤。 用户可能还需要了解分解的稳定性、计算复杂度,以及实际编程实现时的注意事项,比如如何处理数值误差,分块策略等。此外,可能还需要比较实Schur分解与复Schur分解的优缺点,比如计算效率、数值稳定性等。 现在需要验证一下是否正确。根据引用[1]提到Schur分解将方阵分解为上三角矩阵和酉矩阵,而实Schur分解应该是在实数域上的类似分解,但结构不同。引用[2]提到正交矩阵的产生方法,包括Schur分解,所以实Schur分解的结果应该使用实正交矩阵。 在算法实现部分,可能参考QR算法的变体,特别是针对实矩阵的隐式双步算法,比如在《矩阵计算》(Golub和Van Loan)中的描述。这部分需要确保算法的正确性,并可能涉及Hessenberg化过程,先将矩阵转化为上Hessenberg形式,再进行QR迭代,这样可以提高计算效率。 可能还需要考虑分块的大小,如何检测何时得到一个1x1或2x2的块,从而终止对该部分的迭代。此外,如何处理特征值的计算,特别是当遇到2x2块时,如何提取共轭对。 在应用方面,比如在求解线性系统或特征值问题时,实Schur分解如何被用来简化计算。例如,通过分解后,矩阵的幂或指数可以更容易计算,因为拟上三角矩阵的结构更简单。 总结一下,回答的结构应该包括定理陈述、数学推导、应用场景和算法实现步骤。同时,需要确保使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并生成相关问题。</think>### 实Schur分解定理详解 #### 一、定理内容 实Schur分解定理指出:对于任意实方阵 $A \in \mathbb{R}^{n \times n}$,存在正交矩阵 $Q \in \mathbb{R}^{n \times n}$,使得 $$Q^T A Q = T$$ 其中 $T$ 是**拟上三角矩阵**(即分块上三角矩阵),其对角线块为 $1 \times 1$ 或 $2 \times 2$ 的实矩阵。$1 \times 1$ 块对应 $A$ 的实特征值,$2 \times 2$ 块对应 $A$ 的复共轭特征值对[^1]。 --- #### 二、数学推导 1. **基础Schur分解** 复数域上的Schur分解为 $A = U T U^*$,其中 $U$ 是酉矩阵,$T$ 是上三角矩阵。对于实矩阵,若所有特征值均为实数,则可通过正交相似变换直接得到上三角形式;若存在复特征值,则需通过保持实性的变换生成分块结构。 2. **共轭特征值处理** 设 $A$ 有复共轭特征值 $\lambda = a \pm bi$,对应二维不变子空间。通过正交基变换,可将该子空间映射为 $2 \times 2$ 块: $$ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} $$ 此结构保留了特征值的实部与虚部信息。 3. **归纳法证明** 对矩阵维度 $n$ 进行归纳: - **基例**:$n=1$ 时显然成立。 - **假设**:对 $k \leq n-1$ 维矩阵成立。 - **递推**:选取 $A$ 的一个实特征值或复共轭对,构造正交变换将其限制到低维空间,逐步构建 $T$。 --- #### 三、应用场景 1. **特征值计算** 实Schur分解是QR算法的基础,可高效计算实矩阵特征值,避免复数运算[^2]。 2. **控制理论** 在系统稳定性分析中,通过分解后的拟上三角矩阵判断极点分布。 3. **矩阵函数计算** 若 $A = Q T Q^T$,则 $f(A) = Q f(T) Q^T$,其中 $f(T)$ 可通过分块递归计算。 --- #### 四、算法实现(简化步骤) 1. **Hessenberg化** 通过Householder变换将 $A$ 转化为上Hessenberg矩阵 $H$(次对角线以下为零),降低后续计算量: ```python def hessenberg(A): n = A.shape[0] for k in range(n-2): v, beta = householder_reflector(A[k+1:, k]) A[k+1:, k:] -= beta * np.outer(v, v @ A[k+1:, k:]) A[:, k+1:] -= beta * np.outer(A[:, k+1:] @ v, v) return A ``` 2. **双重步QR迭代** 针对实矩阵,隐式双重步QR算法避免显式计算复共轭位移量: ```python def implicit_double_shift(H): n = H.shape[0] m = n - 2 # 计算位移量(取右下角2x2块的特征值) a, b, c, d = H[-2,-2], H[-2,-1], H[-1,-2], H[-1,-1] s1 = a + d s2 = a*d - b*c x = H[0,0]*H[0,0] + H[0,1]*H[1,0] - s1*H[0,0] + s2 y = H[1,0]*(H[0,0] + H[1,1] - s1) z = H[1,0]*H[2,1] # 构造Householder向量并应用变换 v = np.array([x, y, z]) v = v / np.linalg.norm(v) H[0:3,:] -= 2 * np.outer(v, v @ H[0:3,:]) H[:,0:3] -= 2 * np.outer(H[:,0:3] @ v, v) return H ``` 3. **分块收敛判断** 当次对角线元素满足 $|h_{i+1,i}| < \epsilon$ 时,将矩阵分割为独立子块继续迭代。 --- #### 五、数值特性 1. **计算复杂度** 每步QR迭代为 $O(n^2)$,总复杂度约为 $O(n^3)$。 2. **向后稳定性** 算法具有数值稳定性,计算得到的 $\tilde{Q}$ 和 $\tilde{T}$ 满足 $\tilde{Q}^T (A + E) \tilde{Q} = \tilde{T}$,其中 $\|E\| \approx \epsilon_{\text{machine}} \|A\|$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值