OBV指标交易策略(累积能量潮与移动能量潮,成交量多空比率净额及相关应用原则)

本文详细介绍了如何利用Python计算OBV(On-Balance Volume)指标,包括累积能量潮、移动型OBV和修正型OBV,并以东方雨虹为例展示具体实现过程。同时,探讨了OBV指标的理论依据,强调其在股市分析中的应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OBV主要计算累积成交量,将股价上涨的成交量进行正累加,股价下跌时的成交量进行负向累加。其计算公式为:

O B V n = ± V n + O B V n − 1 \displaystyle OBV_n=\pm V_n + OBV_{n-1} OBVn​=±Vn​+OBVn−1​

其中,OBVn和OBVn-1分别是本期和前一期的OBV值,而Vn则是当日的成交量。

  • 当本期股价上涨,Vn的符号为正, O B V n = O B V n − 1 + V n \displaystyle OBV_n=OBV_{n-1}+V_n OBVn​=OBVn−1​+Vn​

  • 当本期股价下跌,Vn的符号为负, O B V n = O B V n − 1 − V n \displaystyle OBV_n=OBV_{n-1}-V_n OBVn​=OBVn−1​−Vn​

以东方雨虹为例,计算OBV。Python代码如下:

import matplotlib.pyplot as plt

difClose = df.Close.diff()

difClose[0] = 0

OBV = (((difClose >= 0)*2-1)*Volume).cumsum()

OBV = OBV.dropna()

OBV.name = ‘OBV’

在这里插入图片描述

1.2 移动型OBV


移动型OBV是由累积OBV进行简单移动平均得到,一般选择9日或者12日为时间跨度,移动型OBV的计算公式为:

s m O B V t = O B V t + O B V t − 1 + ⋅ ⋅ ⋅ + O B V T − 8 9 , t = 9 , 10 , ⋅ ⋅ ⋅ \displaystyle smOBV_t = \frac{OBV_t+OBV_{t-1}+ ··· +OBV_{T-8}}{9}, t=9,10,··· smOBVt​=9OBVt​+OBVt−1​+⋅⋅⋅+OBV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值