【量化笔记】OBV指标交易策略

本文介绍了OBV(On-Balance-Volume)指标的计算原理,包括正负累加、移动型OBV和修正型OBV。当OBV增大,预示价格上涨和市场活跃,可能发出买入信号;反之,OBV减小可能表明价格下跌,释放卖出信号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇博客是量化笔记系列的最后一篇了,之后会停更一段时间量化内容,后面会写什么还待定

OVB主要计算累计成交量,将股价上涨时的成交量进行正累加,对股价下跌时的成交量进行负累加,计算公式是:

O B V n = ± V n + O B V n − 1 OBV_n=\pm V_n + OBV_{n-1} OBVn=±Vn+OBVn1

当本期股价上涨时, V n V_n Vn的符号为正,

当本期股价下跌时, V n V_n Vn的符号为负

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 以青岛啤酒为例
TsingTao=pd.read_csv('TsingTao.csv',index_col='Date')
TsingTao.index=pd.to_datetime(TsingTao.index)
TsingTao.Volume=TsingTao.Volume.replace(0,np.nan)
TsingTao=TsingTao.dropna()
close=TsingTao.Close
Volume=TsingTao.Volume
# 计算OBV
difClose=close.diff()
difClose[0]=0
OBV=(((difClose>=0)*2-1)*Volume).cumsum()
OBV.name='OBV'
OBV.head()
OBV.describe()
count    3.230000e+02
mean    -1.104009e+07
std      3.572700e+07
min     -6.132070e+07
25%     -3.602440e+07
50%     -2.539030e+07
75%      1.912695e+07
max      9.652380e+07
Name: OBV, dtype: float64

移动型OBV,移动型OBV是由累积OBV进行简单移动平均得到,一般选择9日或者12日为时间跨度

s m O B V t = O B V t + O B

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值