YOLO11改进 | 注意力机制 | 增强模型在图像分类和目标检测BAM注意力【小白必备 + 附完整代码】

 秋招面试专栏推荐深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文介绍了一种名为瓶颈注意力模块(BAM)的简单而有效的注意力模块。它可以与任何前馈卷积神经网络集成。我们的模块沿着两个独立的路径(通道和空间)推断注意力图。我们将模块放置在模型的每个瓶颈处,即特征图降采样发生的地方。我们的模块在瓶颈处构建了一个分层的注意力,并且具有可训练的参数,可以与任何前馈模型进行端到端的联合训练。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1.原理

2. 将BAM添加到YOLO11中

2.1 BAM代码实现

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3.修改后的网络结构图

4. 完整代码分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值