数据集的划分

一、训练集、验证集、测试集

训练集:首先,模型在训练集上进行拟合

验证集:接下来,拟合后的模型会在验证集上进行预测。用验证集来看模型有没有学到知识,以及会不会过拟合

测试集:用来提供对最终模型的无偏评估。若测试集在训练过程中从未用到(例如,没有被用在交叉验证当中),则它也被称之为预留集。用测试集测试模型在真实场景的表现。

二、数据集划分比例

对于小规模样本(几万量级),常用的分配比例是60% 训练、20% 验证、20% 测试

对于大规模样本(百万级以上),只要验证和测试的数量足够即可,例如有100w 条数据,那么留1w 验证,1w 测试即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值