算法板子:BFS(广度优先搜索)——迷宫问题,求从迷宫的起点到终点的最短路径; 八数码问题,求从初始布局到最终布局x最少移动多少次

1. 核心思想在于bfs函数

在这里插入图片描述

2. 代码中用到的数组的含义解释

  1. 迷宫问题中的g数组标识探测灯照到的点有没有障碍物或者有没有走过; 比如g[0][1]=1代表(0,1)这个点有障碍物或者已经走过, g[0][1]=0代表(0,1)这个点没有障碍物并且没有走过。求最短路径的长度时用到的d数组代表从(0,0)这个点到当前点的距离; 例如d[2][0]=2代表(0,0)到(2,0)的距离为2。q队列放新下标。打印最短路径时用到的pre数组存储一个点的前驱点的下标; 比如pre[0][1]={0,0}代表(0,1)这个点的前驱是(0,0)。
  2. 八数码问题中的d数组放键值对,键是布局,值是从初始布局变化到该布局x移动了多少次。q队列放新布局。
  3. 两个问题中相同的数组有dx和dy:dx数组存一个点变到上右下左点的横坐标偏移量; 比如dx[0]=-1代表当前这个点变到上面那个点横坐标减1, dx[1]=0代表从当前点变到右边这个点横坐标不变, dx[2]=1代表变到下面这个点横坐标要加1, dx[3]=0代表变到左边这个点横坐标不变。dy数组存一个点变到上下左右点的纵坐标偏移量; dy[0]=0代表当前点变到上面那个点纵坐标不变, dy[1]=1代表当前点变到右边那个点纵坐标加1, 剩下的dy[2]=0, dy[3]=-1理解类似。

3. 迷宫问题

(1)求从(0,0)点到(4,4)点的最短路径是多少——bfs函数

#include <iostream>
#include <queue>
using namespace std;

const int N = 100 + 10;
typedef pair<int, int> PII;

int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int g[N][N], d[N][N];
queue<PII> q;

int res, n, m;

int bfs(int x, int y)
{
    d[x][y] = 0;
    g[x][y] = 1;
    q.push({x, y});
    PII end = {n - 1, m - 1};
    
    while (q.size())
    {
        auto u = q.front(); q.pop();
        int dis = d[u.first][u.second];
        
        if (u == end) return dis;
        
        for (int i = 0; i < 4; i ++ )
        {
            int a = u.first + dx[i], b = u.second + dy[i];
            if (a < 0 || a == n  || b < 0 || b == m) continue;
            if (g[a][b]) continue;
            
            g[a][b] = 1;
            d[a][b] = dis + 1;
            q.push({a, b});
        }
    }
}

int main()
{
    cin >> n >> m;
    for (int i = 0; i < n; i ++ ) 
        for (int j = 0; j < m; j ++ )
            cin >> g[i][j];
            
    cout << bfs(0, 0) << endl;    
    
    return 0;
}

(2)打印最短路径——在bfs函数的基础上多了一个print函数

a. 思想

在这里插入图片描述

b. 代码
#include <iostream>
#include <queue>
using namespace std;

const int N = 100 + 10;

int g[N][N];
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
typedef pair<int, int> PII;
PII pre[N][N];

// 往队列中添加探测灯照到的元素
queue<PII> q;

int n, m;

void bfs(int x, int y)
{
    // 一开始点在(0,0)上,将(0,0)点作标记并加入队列
    g[x][y] = 1;
    q.push({x, y});
 
    while (q.size())
    {
        // 取队头,将队头出队
        PII f = q.front(); 
        q.pop();
        // 在队头这个点上打探照灯,照到周围四个点,顺序为上右下左
        for (int i = 0; i < 4; i ++ )
        {
            // 照到的点坐标为(a,b)
            int a = f.first + dx[i], b = f.second + dy[i];
            // 如果照到的点的横坐标或纵坐标越界就跳过该点
            if (a < 0 || a == n || b < 0 || b == m) continue; 
            // 如果照到的这个点有障碍物或者走过就跳过该点
            if (g[a][b]) continue;
            // 如果照到的点没越界并且没走过或没障碍物,就将照到的点作标记
            g[a][b] = 1;
            // 记录照到的点的前驱
            pre[a][b] = f;
            // 将照到的点入队
            q.push({a, b});
        }
    }
    
}

// 找到最短路径
void print(int x, int y)
{
    // 递归到(0,0)这个点了
    if (!x && !y)
    {
        cout << x << " " << y << endl;
        return;
    }
    
    auto c = pre[x][y];
    print(c.first, c.second);
    cout << x << " " << y << endl;
}

int main()
{
    cin >> n >> m;
    
    for (int i = 0; i < n ; i ++ )
        for (int j = 0; j < m; j ++ )
            cin >> g[i][j];
    
    // 先用bfs将迷宫上所有点遍历一遍        
    bfs(0, 0);
    
    // 再将终点的下标(4,4)传入print函数,打印最短路径
    print(n - 1, m - 1);
    
    
    return 0;
}

4. 八数码问题——bfs函数

#include <iostream>
#include <queue>
#include <unordered_map>
using namespace std;

// 往队列里加的是扩展出的新布局
queue<string> q;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
// 放键值对,键是布局,值是从初始布局变化到该布局x移动了多少次
unordered_map<string, int> d;

// 传入初始布局
int bfs(string init)
{
	// 代表从初始布局变到初始布局x移动0次
	d[init] = 0;
    // 将初始布局加入队列
    q.push(init);
    // 定义最终布局
    string end = "12345678x";
    
    while (q.size())
    {
        // 取出队头布局
        string u = q.front(); q.pop();
        // dis代表从初始布局变化到队头布局,x移动了多少次
        int dis = d[u];
        // 如果取出的队头布局是最终布局,那么输出变化到最终布局时x的移动次数
        if (u == end) return d[u];  
        
        // 求出x在二维布局中的下标; 也就是先求出x在一维字符串中的下标,再求出x在二维布局中的下标
        int k = u.find('x');
        int x = k / 3, y = k % 3; 
        // 探射灯照到x周围4个点,尝试将x与周围点交换
        for (int i = 0; i < 4; i ++ )
        {
            int a = x + dx[i], b = y + dy[i];
            if (a < 0 || a == 3 || b < 0 || b == 3) continue;
            
            // 若探射灯照到的这个点没有越界,就交换x和该点,注意是在字符串中交换着两个字符
            swap(u[k], u[3 * a + b]);
            // 如果交换后的新布局不在map中,代表这个新布局之前没有出现过,那么就在map中加入新布局,并往队列中加入这个新布局
            if (!d.count(u)) d[u] = dis + 1, q.push(u);
            // 还原回队头布局,x继续交换下一个照到的点,再得到新布局
            swap(u[k], u[3 * a + b]);
        }
    }
    
    // 无法从初始布局变化到最终布局,那么就不存在解决方案
    return -1;
    
}


int main()
{
    // init代表初始布局
    string init;
    
    char c;
    for (int i = 0; i < 9; i ++ ) cin >> c, init += c;
    
    cout << bfs(init) << endl;
    
    
    return 0;
}
  • 13
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值