1.pytorch——Dataset的使用

本文介绍了如何在PyTorch中使用自定义Dataset类来获取和处理数据,包括数据的路径管理、长度计算以及数据项的获取方法。作者通过MyData类展示了如何加载并展示训练集中的图像和标签。
摘要由CSDN通过智能技术生成

Dataset的具体功能:

1.用来获取数据及其标签(label)

2.获取数据集的长度

示例代码:

from torch.utils.data import Dataset
from PIL import Image     #导入PIL中的Image类作为图像的存储类型
import os
class MyData(Dataset):

    def __init__(self,root_dir,label_dir):
        self.root_dir=root_dir  #数据根目录
        self.label_dir=label_dir  #数据标签
        self.path=os.path.join(self.root_dir,self.label_dir)  #数据所在地址,使用了os.path.join()用来拼接地址
        self.img_path=os.listdir(self.path)  #把每一个数据名称变成一个list
    def  __getitem__(self, idx):
        img_name=self.img_path[idx]
        img_item_path=os.path.join(self.root_dir,self.label_dir,img_name)  #获取的每一项图像的地址
        img=Image.open(img_item_path)    #图片的数据化
        label=self.label_dir
        return img,label

    def __len__(self):
        return len(self.img_path)   #数据长度
#实例化数据集
root_dir="dataset/train"
ant_label_dir="ants"
bees_label_dir="bees"
ants_dataset=MyData(root_dir,ant_label_dir)
bees_dataset=MyData(root_dir,bees_label_dir)
#数据集合可以拼接
train_dataset=ants_dataset+bees_dataset
#获取数据集数据
img,label=train_dataset[124]
img.show()

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值